1 Dual of Penalized Regression

Consider the following M-estimator

\[\hat{\beta} = \arg \min_{\beta} \{ \| Y - X \beta \|_2^2 : \phi(\beta) \leq t \}, \]

where \(\phi : \mathbb{R}^p \to \mathbb{R} \) is a penalty function with the properties that it is convex, continuous, \(\phi(0) = 0 \), and \(\phi(u) > 0 \) for \(u \neq 0 \). It turns out that there exists \(\lambda \) such that the minimizer to the above optimization is identical to the minimizer of the following optimization

\[\hat{\beta}^\lambda = \arg \min_{\beta} \| Y - X \beta \|_2^2 + \lambda \phi(\beta). \]

To show this, consider the first optimization problem for \(t > 0 \). Slater’s condition holds, and so the Langrange dual problem has zero optimality gap. This dual problem is given by

\[
\begin{align*}
&\max_{\nu \geq 0} \min_{\beta} \| Y - X \beta \|_2^2 + \nu (\phi(\beta) - t) \\
&\Rightarrow \max_{\nu} \{ \| Y - X \hat{\beta}^\nu \|_2^2 + \nu \phi(\hat{\beta}^\nu) - \nu t : \nu \geq 0 \}.
\end{align*}
\]

Let the optimizer be \(\nu^* \) and define \(\lambda = \nu^* \), then \(\hat{\beta}^\lambda \) is identical to \(\hat{\beta} \).

This result is useful because it has a graphical interpretation that provides additional insight. Visualizing the constrained form of the estimator provides intuition into why the \(L2 \)-norm does not lead to sparsity, whereas the \(L1 \)-norm does.

2 Variants of Lasso

There are numerous variants and extensions of Lasso regression. The key idea is that because Lasso is defined as an M-estimator, it can be combined with other ideas and variants of M-estimators. Some examples are given below:
2.1 Group Lasso

Recall the group sparsity model: Suppose we partition the coefficients into blocks
\[\beta' = [\beta^1 \ldots \beta^m]' , \]
where the blocks are given by:
\[\beta^1 = [\beta_1 \ldots \beta_k] \]
\[\beta^2 = [\beta_{k+1} \ldots \beta_{2k}] \]
\[\vdots \]
\[\beta^m = [\beta_{(m-1)k+1} \ldots \beta_{mk}] . \]

Then the idea of group sparsity is that most blocks of coefficients are zero.

We can define the following M-estimator to achieve group sparsity in our resulting estimate:
\[\hat{\beta} = \arg \min_{\beta} \| Y - X\beta \|_2^2 + \lambda \sum_{j=1}^m \| \beta^j \|_2 . \]

However, this estimator will not achieve sparsity within individual blocks \(\beta^j \). As a result, we define the sparse group lasso as
\[\hat{\beta} = \arg \min_{\beta} \| Y - X\beta \|_2^2 + \lambda \sum_{j=1}^m \| \beta^j \|_2 + \mu \| \beta \|_1 . \]

2.2 Collinearity and Sparsity

In some models, one might have both collinearity and sparsity. One approach to this situation is the elastic net, which is
\[\hat{\beta} = \arg \min_{\beta} \| Y - X\beta \|_2^2 + \lambda \| \beta \|_2^2 + \mu \| \beta \|_1 . \]

An alternative approach might be the Lasso Exterior Derivative Estimator (LEDE) estimator
\[\hat{\beta} = \arg \min_{\beta} \| Y - X\beta \|_2^2 + \lambda \| \Pi \beta \|_2^2 + \mu \| \beta \|_1 , \]
where \(\Pi \) is a projection matrix that projects onto the \((p - d) \) smallest eigenvectors of the sample covariance matrix \(\frac{1}{n}X'X \).

A further generalization of this idea is when there is manifold structure and sparsity: The Nonparametric Lasso Exterior Derivative Estimator (NLEDE) estimator is
\[\hat{\beta}_n = \arg \min_{\beta_n, \beta} \| W_h^{1/2} \left(Y - [I_n \ X_0] \left[\beta_n \ \beta \right] \right) \|_2^2 + \lambda \| \Pi \beta \|_2^2 + \mu \| \beta \|_1 , \]
where \(X_0 = X - x_{0} I_n \), \(\Pi \) is a projection matrix that projects onto the \((p - d) \) smallest eigenvectors of the sample local covariance matrix \(\frac{1}{nh^{d/2}} X_0' W_h X_0 \), and
\[W_h = \text{diag} \left(K(\| x_1 - x_0 \| / h), \ldots, K(\| x_n - x_0 \| / h) \right) . \]
3 High-Dimensional Convergence

One important feature of Lasso regression is consistency in the high-dimensional setting. Assume that X_j is column-normalized, meaning that

$$\frac{X_j}{\sqrt{n}} \leq 1, \forall j = 1, \ldots, p.$$

We have two results regarding sparse models.

1. If some technical conditions hold for the s-sparse model, then with probability at least $1 - c_1 \exp(-c_2 \log p)$ we have for the s-sparse model that

$$\|\hat{\beta} - \beta\|_2 \leq c_3 \sqrt{s} \sqrt{\frac{\log p}{n}},$$

where c_1, c_2, c_3 are positive constants.

2. If some technical conditions hold for the approximately-s_q-sparse model (recall that $q \in [0, 1]$) and β belongs to a ball of radius s_q such that $\sqrt{s_q} \left(\frac{\log p}{n}\right)^{1/2 - q/4} \leq 1$, then with probability at least $1 - c_1 \exp(-c_2 \log p)$ we have for the approximately-s_q-sparse model that

$$\|\hat{\beta} - \beta\|_2 \leq c_3 \sqrt{s_q} \left(\frac{\log p}{n}\right)^{1/2 - q/4},$$

where c_1, c_2, c_3 are positive constants.

Compare this to the classical (fixed p) setting in which the convergence rate is $O_p(\sqrt{p/n})$.
