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1 Lasso Regression

e M-estimator which had the Bayesian interpretation of a linear model with Laplacian prior

β̂ = argmin
β

∥Y −Xβ∥22 + λ∥β∥1,

has multiple names: Lasso regression and L1-penalized regression.

1.1 C  L R

Computation of this estimator is a complex topic because the objective is not differentiable, but
for pedagogy we talk about how the corresponding optimization can be rewritten as a constrained
quadratic program (QP). If we use an epigraph formulation, then we can rewrite the optimization
as

β̂ = argmin
β

∥Y −Xβ∥22 + t

s.t. t ≥ λ∥β∥1.

But because ∥β∥1 =
∑p

j=1 |βj| (by definition), we can rewrite the above optimization as a con-
strained QP

β̂ = argmin
β

∥Y −Xβ∥22 + t

s.t. t ≥ λ
∑p

j=1 µj

− µj ≤ βj ≤ µj,∀j = 1, . . . , p.

It is worth stressing that this is not an efficient way to compute Lasso regression.

1.2 S T

e Lasso regression estimate has an important interpretation in the bias-variance context. For
simplicity, consider the special case where X ′X = Ip. In this case, the objective of the Lasso
regression decouples

∥Y −Xβ∥22 + λ∥β∥1 = Y ′Y + β′X ′Xβ − 2Y ′Xβ + λ∥β∥1
= Y ′Y +

∑p
j=1

(
β2
j − 2Y ′Xjβj + λ|βj|

)
,
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whereXj is the j-th column of the matrixX . And because it decouples we can solve the optimiza-
tion problem separately for each term in the summation.

Note that even though each term in the objective is not differentiable, we can break the problem
into three cases. In the first case, βj > 0 and so setting the derivative equal to zero gives

2β̂j − 2Y ′Xj + λ = 0 ⇒ β̂j = Y ′Xj − λ/2.

In the second case, βj < 0 and so setting the derivative equal to zero gives

2β̂j − 2Y ′Xj − λ = 0 ⇒ β̂j = Y ′Xj + λ/2.

In the third case, βj = 0.
For reference, we also compute the OLS solution in this special case. If we define β̂0

j to be the
OLS solution, then a similar calculation to the one shown above gives that β̂0

j = Y ′Xj . And so
comparing to OLS solution to the Lasso regression solution, we have that

β̂j =


β̂0
j + λ/2, if β̂j = β̂0

j + λ/2 < 0

β̂0
j − λ/2, if β̂j = β̂0

j − λ/2 > 0

0, otherwise

is can be interpreted as a soft thresholding phenomenon, and it is another approach to balancing
the bias-variance tradeoff.
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