IEOR 290A - Lecture 2
 Bias-Variance Tradeoff

1 Geometric Interpretation of OLS

Recall the optimization formulation of OLS,

$$
\hat{\beta}=\arg \min _{\beta}\|Y-X \beta\|_{2}^{2}
$$

where the variables are as defined before. The basic tension in the problem above is that in general no exact solution exists to the linear equation

$$
Y=X \beta
$$

otherwise we could use linear algebra to compute β, and this value would be a minimizer to the optimization problem written above.

Though no exact solution exists to $Y=X \beta$, an interesting question to ask is whether there is some related linear equation for which an exact solution exists. Because the noise is in Y and not X, we can imagine that we would like to pick some \hat{Y} such that $\hat{Y}=X \hat{\beta}$ has an exact solution. Recall from linear algebra, that this is equivalent to asking that $\hat{Y} \in \mathcal{R}(X)$ (i.e., \hat{Y} is in the range space of X). Now if we think of \hat{Y} as true signal, then we can decompose Y as

$$
Y=\hat{Y}+\Delta Y
$$

where ΔY represents orthogonal noise. Because - from Fredholm's theorem in linear algebra - we know that the range space of X is orthogonal to the null space of X^{\prime} (i.e., $\mathcal{R}(X) \perp \mathcal{N}\left(X^{\prime}\right)$), it must be the case that $\Delta Y \in \mathcal{N}\left(X^{\prime}\right)$ since we defined \hat{Y} such that $\hat{Y} \in \mathcal{R}(X)$. As a result, premultiplying $Y=\hat{Y}+\Delta Y$ by X^{\prime} gives

$$
X^{\prime} Y=X^{\prime} \hat{Y}+X^{\prime} \Delta Y=X^{\prime} \hat{Y}
$$

The intuition is that premultiplying by X^{\prime} removes the noise component. And because $\hat{Y} \in \mathcal{R}(X)$ and $\hat{Y}=X \hat{\beta}$, we must have that

$$
X^{\prime} Y=X^{\prime} \hat{Y}=X^{\prime} X \hat{\beta}
$$

Solving this gives $\hat{\beta}=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right)$, which is our regular equation for the OLS estimate.

2 Local Linear Regression

As seen above, a geometric perspective to regression problems can be quite valuable. Consider a regression model

$$
y=f(x)+\epsilon
$$

in which $f(\cdot)$ is known to be highly nonlinear but of unknown structure. A nonparametric approach is natural, and one nonparametric method is known as local linear regression (LLR). The idea of this method is that if $f(\cdot)$ has sufficient smoothness (say twice-differentiable), then the model will look linear in small regions of input-space. Suppose that we consider points in input space nearby x_{0}, then intuitively our model looks like

$$
y=\beta_{0}\left[x_{0}\right]+\sum_{j=1}^{p} \beta_{j}\left[x_{0}\right] \cdot\left(x^{j}-x_{0}^{j}\right)+\epsilon
$$

for x near x_{0} (e.g., $\left\|x-x_{0}\right\| \leq h$ for some small $h>0$). The square brackets $\left[x_{0}\right]$ are used to represent the fact that the value of β will vary for different values of x_{0}.

The idea of a neighborhood of radius h is central to LLR. It is customary in statistics to call this h the bandwidth. In this method, we select points within a radius of h from x_{0}. Furthermore, we can weight the points accordingly so that points closer to x_{0} are given more weight than those points further from x_{0}. To do this, we define a kernel function $K(u): \mathbb{R} \rightarrow \mathbb{R}$ which has the properties

1. Finite Support $-K(u)=0$ for $|u| \geq 1$;
2. Even Symmetry $-K(u)=K(-u)$;
3. Positive Values $-K(u)>0$ for $|u|<1$.

A canonical example is the Epanechnikov kernel

$$
K(u)= \begin{cases}\frac{3}{4}\left(1-u^{2}\right), & \text { for }|u|<1 \\ 0, & \text { otherwise }\end{cases}
$$

It turns out that the particular shape of the kernel function is not as important as the bandwidth h. If we choose a large h, then the local linear assumption is not accurate. On the other hand, if we choose a very small h, then the estimate will not be accurate because only a few data points will be considered. It turns out that this tradeoff in the value of h is a manifestation of the bias-variance tradeoff; however, being able to quantify this requires understanding stochastic convergence.

Before we discuss this tradeoff in more detail, we describe the LLR. The idea is to perform a weighted-variant of OLS by using a kernel function and a bandwidth h to provide the weighting. The LLR estimate $\hat{\beta}_{0}\left[x_{0}\right], \hat{\beta}\left[x_{0}\right]$ is given by the minimizer to the following optimization

$$
\left[\begin{array}{l}
\hat{\beta}_{0}\left[x_{0}\right] \\
\hat{\beta}\left[x_{0}\right]
\end{array}\right]=\arg \min _{\beta_{0}, \beta} \sum_{i=1}^{n} K\left(\left\|x_{i}-x_{0}\right\| / h\right) \cdot\left(y_{i}-\beta_{0}-\left(x_{i}-x_{0}\right)^{\prime} \beta\right)^{2} .
$$

Now if we define a weighting matrix

$$
W_{h}=\operatorname{diag}\left(K\left(\left\|x_{1}-x_{0}\right\| / h\right), \ldots, K\left(\left\|x_{n}-x_{0}\right\| / h\right)\right)
$$

then we can rewrite this optimization as

$$
\left[\begin{array}{l}
\hat{\beta}_{0}\left[x_{0}\right] \\
\hat{\beta}\left[x_{0}\right]
\end{array}\right]=\arg \min _{\beta_{0}, \beta}\left\|W_{h}^{1 / 2}\left(Y-\left[\begin{array}{ll}
\mathbb{1}_{n} & X_{0}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta
\end{array}\right]\right)\right\|_{2}^{2},
$$

where $\mathbb{1}_{n}$ is a real-valued vector of all ones and of length dimension n and $X_{0}=X-x_{0}^{\prime} \mathbb{1}_{n}$. This is identical to the OLS optimization, and so we can use that answer to conclude that

$$
\left[\begin{array}{c}
\hat{\beta}_{0}\left[x_{0}\right] \\
\hat{\beta}\left[x_{0}\right]
\end{array}\right]=\left(\left[\begin{array}{ll}
\mathbb{1}_{n} & X_{0}
\end{array}\right]^{\prime} W_{h}\left[\begin{array}{ll}
\mathbb{1}_{n} & X_{0}
\end{array}\right]\right)^{-1}\left(\left[\begin{array}{ll}
\mathbb{1}_{n} & X_{0}
\end{array}\right]^{\prime} W_{h} Y\right) .
$$

3 Bias-Variance Tradeoff

Consider the case of parametric regression with $\beta \in \mathbb{R}$, and suppose that we would like to analyze the expectation of the squared loss of the difference between a estimate $\hat{\beta}$ and the true parameter β. In particular, we have that

$$
\begin{aligned}
\mathbb{E}\left((\hat{\beta}-\beta)^{2}\right) & =\mathbb{E}\left((\hat{\beta}-\mathbb{E}(\hat{\beta})+\mathbb{E}(\hat{\beta})-\beta)^{2}\right) \\
& =\mathbb{E}\left((\mathbb{E}(\hat{\beta})-\beta)^{2}\right)+\mathbb{E}\left((\hat{\beta}-\mathbb{E}(\hat{\beta}))^{2}\right)+2 \mathbb{E}((\mathbb{E}(\hat{\beta})-\beta)(\hat{\beta}-\mathbb{E}(\hat{\beta})) \\
& =\mathbb{E}\left((\mathbb{E}(\hat{\beta})-\beta)^{2}\right)+\mathbb{E}\left((\hat{\beta}-\mathbb{E}(\hat{\beta}))^{2}\right)+2(\mathbb{E}(\hat{\beta})-\beta)(\mathbb{E}(\hat{\beta})-\mathbb{E}(\hat{\beta})) \\
& =\mathbb{E}\left((\mathbb{E}(\hat{\beta})-\beta)^{2}\right)+\mathbb{E}\left((\hat{\beta}-\mathbb{E}(\hat{\beta}))^{2}\right) .
\end{aligned}
$$

The term $\mathbb{E}\left((\hat{\beta}-\mathbb{E}(\hat{\beta}))^{2}\right)$ is clearly the variance of the estimate $\hat{\beta}$. The other term $\mathbb{E}\left((\mathbb{E}(\hat{\beta})-\beta)^{2}\right)$ measures how far away the "best" estimate is from the true value, and it is common to define $\operatorname{bias}(\hat{\beta})=\mathbb{E}(\mathbb{E}(\hat{\beta})-\beta)$. With this notation, we have that

$$
\mathbb{E}\left((\hat{\beta}-\beta)^{2}\right)=(\operatorname{bias}(\hat{\beta}))^{2}+\operatorname{var}(\hat{\beta}) .
$$

This equation states that the expected estimation error (as measured by the squared loss) is equal to the bias-squared plus the variance, and in fact there is a tradeoff between these two aspects in an estimate.

It is worth making three comments. The first is that if $\operatorname{bias}(\hat{\beta})=\mathbb{E}(\mathbb{E}(\hat{\beta})-\beta)=0$, then the estimate $\hat{\beta}$ is said to be unbiased. Second, this bias-variance tradeoff exists for vector-valued parameters $\beta \in \mathbb{R}^{p}$, for nonparametric estimates, and other models. Lastly, the term overfit is sometimes used to refer to an model with low bias but extremely high variance.

