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1 Geometric Interpretation of OLS

Recall the optimization formulation of OLS,

β̂ = argmin
β

∥Y −Xβ∥22,

where the variables are as defined before. e basic tension in the problem above is that in general
no exact solution exists to the linear equation

Y = Xβ;

otherwise we could use linear algebra to compute β, and this value would be a minimizer to the
optimization problem written above.

ough no exact solution exists to Y = Xβ, an interesting question to ask is whether there is
some related linear equation for which an exact solution exists. Because the noise is in Y and not
X , we can imagine that we would like to pick some Ŷ such that Ŷ = Xβ̂ has an exact solution.
Recall from linear algebra, that this is equivalent to asking that Ŷ ∈ R(X) (i.e., Ŷ is in the range
space of X). Now if we think of Ŷ as true signal, then we can decompose Y as

Y = Ŷ +∆Y,

where∆Y represents orthogonal noise. Because – from Fredholm’s theorem in linear algebra – we
know that the range space ofX is orthogonal to the null space ofX ′ (i.e.,R(X) ⊥ N (X ′)), it must
be the case that∆Y ∈ N (X ′) since we defined Ŷ such that Ŷ ∈ R(X). As a result, premultiplying
Y = Ŷ +∆Y by X ′ gives

X ′Y = X ′Ŷ +X ′∆Y = X ′Ŷ .

e intuition is that premultiplying byX ′ removes the noise component. And because Ŷ ∈ R(X)

and Ŷ = Xβ̂, we must have that

X ′Y = X ′Ŷ = X ′Xβ̂.

Solving this gives β̂ = (X ′X)−1(X ′Y ), which is our regular equation for the OLS estimate.
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2 Local Linear Regression

As seen above, a geometric perspective to regression problems can be quite valuable. Consider a
regression model

y = f(x) + ϵ

in which f(·) is known to be highly nonlinear but of unknown structure. A nonparametric approach
is natural, and one nonparametric method is known as local linear regression (LLR). e idea of
this method is that if f(·) has sufficient smoothness (say twice-differentiable), then the model will
look linear in small regions of input-space. Suppose that we consider points in input space nearby
x0, then intuitively our model looks like

y = β0[x0] +

p∑
j=1

βj[x0] · (xj − xj
0) + ϵ

for x near x0 (e.g., ∥x − x0∥ ≤ h for some small h > 0). e square brackets [x0] are used to
represent the fact that the value of β will vary for different values of x0.

e idea of a neighborhood of radius h is central to LLR. It is customary in statistics to call
this h the bandwidth. In this method, we select points within a radius of h from x0. Furthermore,
we can weight the points accordingly so that points closer to x0 are given more weight than those
points further from x0. To do this, we define a kernel function K(u) : R → R which has the
properties

1. Finite Support – K(u) = 0 for |u| ≥ 1;

2. Even Symmetry – K(u) = K(−u);

3. Positive Values – K(u) > 0 for |u| < 1.

A canonical example is the Epanechnikov kernel

K(u) =

{
3
4
(1− u2), for |u| < 1

0, otherwise

It turns out that the particular shape of the kernel function is not as important as the bandwidth h.
If we choose a large h, then the local linear assumption is not accurate. On the other hand, if we
choose a very small h, then the estimate will not be accurate because only a few data points will be
considered. It turns out that this tradeoff in the value of h is a manifestation of the bias-variance
tradeoff; however, being able to quantify this requires understanding stochastic convergence.

Before we discuss this tradeoff in more detail, we describe the LLR. e idea is to perform a
weighted-variant of OLS by using a kernel function and a bandwidth h to provide the weighting.
e LLR estimate β̂0[x0], β̂[x0] is given by the minimizer to the following optimization[

β̂0[x0]

β̂[x0]

]
= argmin

β0,β

n∑
i=1

K(∥xi − x0∥/h) · (yi − β0 − (xi − x0)
′β)2.
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Now if we define a weighting matrix

Wh = diag (K(∥x1 − x0∥/h), . . . , K(∥xn − x0∥/h)) ,

then we can rewrite this optimization as[
β̂0[x0]

β̂[x0]

]
= argmin

β0,β

∥∥∥∥W 1/2
h

(
Y −

[
1n X0

] [β0

β

])∥∥∥∥2

2

,

where 1n is a real-valued vector of all ones and of length dimension n and X0 = X − x′
01n. is

is identical to the OLS optimization, and so we can use that answer to conclude that[
β̂0[x0]

β̂[x0]

]
= (

[
1n X0

]′
Wh

[
1n X0

]
)−1(

[
1n X0

]′
WhY ).

3 Bias-Variance Tradeoff

Consider the case of parametric regression with β ∈ R, and suppose that we would like to analyze
the expectation of the squared loss of the difference between a estimate β̂ and the true parameter
β. In particular, we have that

E
(
(β̂ − β)2

)
= E

(
(β̂ − E(β̂) + E(β̂)− β)2

)
= E

(
(E(β̂)− β)2

)
+ E

(
(β̂ − E(β̂))2

)
+ 2E

(
(E(β̂)− β)(β̂ − E(β̂)

)
= E

(
(E(β̂)− β)2

)
+ E

(
(β̂ − E(β̂))2

)
+ 2(E(β̂)− β)(E

(
β̂)− E(β̂))

= E
(
(E(β̂)− β)2

)
+ E

(
(β̂ − E(β̂))2

)
.

e term E
(
(β̂−E(β̂))2

)
is clearly the variance of the estimate β̂. e other term E

(
(E(β̂)−β)2

)
measures how far away the “best” estimate is from the true value, and it is common to define
bias(β̂) = E

(
E(β̂)− β

)
. With this notation, we have that

E
(
(β̂ − β)2

)
= (bias(β̂))2 + var(β̂).

is equation states that the expected estimation error (as measured by the squared loss) is equal to
the bias-squared plus the variance, and in fact there is a tradeoff between these two aspects in an
estimate.

It is worth making three comments. e first is that if bias(β̂) = E
(
E(β̂) − β

)
= 0, then

the estimate β̂ is said to be unbiased. Second, this bias-variance tradeoff exists for vector-valued
parameters β ∈ Rp, for nonparametric estimates, and other models. Lastly, the term overfit is
sometimes used to refer to an model with low bias but extremely high variance.
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