1 Geometric Interpretation of OLS

Recall the optimization formulation of OLS,

$\hat{\beta} = \arg \min_{\beta} \| Y - X\beta \|_2^2,$

where the variables are as defined before. The basic tension in the problem above is that in general no exact solution exists to the linear equation

$Y = X\beta;$

otherwise we could use linear algebra to compute β, and this value would be a minimizer to the optimization problem written above.

Though no exact solution exists to $Y = X\beta$, an interesting question to ask is whether there is some related linear equation for which an exact solution exists. Because the noise is in Y and not X, we can imagine that we would like to pick some \hat{Y} such that $\hat{Y} = X\hat{\beta}$ has an exact solution. Recall from linear algebra, that this is equivalent to asking that $\hat{Y} \in \mathcal{R}(X)$ (i.e., \hat{Y} is in the range space of X). Now if we think of \hat{Y} as true signal, then we can decompose Y as

$Y = \hat{Y} + \Delta Y,$

where ΔY represents orthogonal noise. Because – from Fredholm’s theorem in linear algebra – we know that the range space of X is orthogonal to the null space of X' (i.e., $\mathcal{R}(X) \perp \mathcal{N}(X')$), it must be the case that $\Delta Y \in \mathcal{N}(X')$ since we defined \hat{Y} such that $\hat{Y} \in \mathcal{R}(X)$. As a result, premultiplying $Y = \hat{Y} + \Delta Y$ by X' gives

$X'Y = X'\hat{Y} + X'\Delta Y = X'\hat{Y}.$

The intuition is that premultiplying by X' removes the noise component. And because $\hat{Y} \in \mathcal{R}(X)$ and $\hat{Y} = X\hat{\beta}$, we must have that

$X'Y = X'\hat{Y} = X'X\hat{\beta}.$

Solving this gives $\hat{\beta} = (X'X)^{-1}(X'Y)$, which is our regular equation for the OLS estimate.
2 Local Linear Regression

As seen above, a geometric perspective to regression problems can be quite valuable. Consider a regression model

\[y = f(x) + \epsilon \]

in which \(f(\cdot) \) is known to be highly nonlinear but of unknown structure. A nonparametric approach is natural, and one nonparametric method is known as local linear regression (LLR). The idea of this method is that if \(f(\cdot) \) has sufficient smoothness (say twice-differentiable), then the model will look linear in small regions of input-space. Suppose that we consider points in input space nearby \(x_0 \), then intuitively our model looks like

\[y = \beta_0[x_0] + \sum_{j=1}^{p} \beta_j[x_0] \cdot (x^j - x^j_0) + \epsilon \]

for \(x \) near \(x_0 \) (e.g., \(\|x - x_0\| \leq h \) for some small \(h > 0 \)). The square brackets \([x_0]\) are used to represent the fact that the value of \(\beta \) will vary for different values of \(x_0 \).

The idea of a neighborhood of radius \(h \) is central to LLR. It is customary in statistics to call this \(h \) the bandwidth. In this method, we select points within a radius of \(h \) from \(x_0 \). Furthermore, we can weight the points accordingly so that points closer to \(x_0 \) are given more weight than those points further from \(x_0 \). To do this, we define a kernel function \(K(u) : \mathbb{R} \rightarrow \mathbb{R} \) which has the properties

1. Finite Support – \(K(u) = 0 \) for \(|u| \geq 1 \);
2. Even Symmetry – \(K(u) = K(-u) \);
3. Positive Values – \(K(u) > 0 \) for \(|u| < 1 \).

A canonical example is the Epanechnikov kernel

\[K(u) = \begin{cases} \frac{3}{4}(1 - u^2), & \text{for } |u| < 1 \\ 0, & \text{otherwise} \end{cases} \]

It turns out that the particular shape of the kernel function is not as important as the bandwidth \(h \). If we choose a large \(h \), then the local linear assumption is not accurate. On the other hand, if we choose a very small \(h \), then the estimate will not be accurate because only a few data points will be considered. It turns out that this tradeoff in the value of \(h \) is a manifestation of the bias-variance tradeoff; however, being able to quantify this requires understanding stochastic convergence.

Before we discuss this tradeoff in more detail, we describe the LLR. The idea is to perform a weighted-variant of OLS by using a kernel function and a bandwidth \(h \) to provide the weighting. The LLR estimate \(\hat{\beta}_0[x_0], \hat{\beta}[x_0] \) is given by the minimizer to the following optimization

\[
\begin{bmatrix} \hat{\beta}_0[x_0] \\ \hat{\beta}[x_0] \end{bmatrix} = \arg \min_{\beta_0, \beta} \sum_{i=1}^{n} K(\|x_i - x_0\|/h) \cdot (y_i - \beta_0 - (x_i - x_0)'\beta)^2.
\]
Now if we define a weighting matrix
\[W_h = \text{diag}(K(\|x_1 - x_0\|/h), \ldots, K(\|x_n - x_0\|/h)), \]
then we can rewrite this optimization as
\[
\begin{bmatrix} \hat{\beta}_0[x_0] \\ \beta[x_0] \end{bmatrix} = \arg \min_{\beta_0, \beta} \left\| W_h^{1/2} \left(Y - \begin{bmatrix} \mathbb{1}_n & X_0 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta \end{bmatrix} \right) \right\|^2,
\]
where \(\mathbb{1}_n \) is a real-valued vector of all ones and of length dimension \(n \) and \(X_0 = X - x_0' \mathbb{1}_n \). This is identical to the OLS optimization, and so we can use that answer to conclude that
\[
\begin{bmatrix} \hat{\beta}_0[x_0] \\ \beta[x_0] \end{bmatrix} = \left(\begin{bmatrix} \mathbb{1}_n & X_0 \end{bmatrix}' W_h [\mathbb{1}_n & X_0] \right)^{-1} \left(\begin{bmatrix} \mathbb{1}_n & X_0 \end{bmatrix}' W_h Y \right).
\]

3 Bias-Variance Tradeoff

Consider the case of parametric regression with \(\beta \in \mathbb{R} \), and suppose that we would like to analyze the expectation of the squared loss of the difference between a estimate \(\hat{\beta} \) and the true parameter \(\beta \). In particular, we have that
\[
\mathbb{E}((\hat{\beta} - \beta)^2) = \mathbb{E}((\hat{\beta} - \mathbb{E}(\hat{\beta}) + \mathbb{E}(\hat{\beta}) - \beta)^2)
\]
\[
= \mathbb{E}((\mathbb{E}(\hat{\beta}) - \beta)^2) + \mathbb{E}((\hat{\beta} - \mathbb{E}(\hat{\beta}))^2) + 2 \mathbb{E}((\mathbb{E}(\hat{\beta}) - \beta)(\hat{\beta} - \mathbb{E}(\hat{\beta})))
\]
\[
= \mathbb{E}((\mathbb{E}(\hat{\beta}) - \beta)^2) + \mathbb{E}((\hat{\beta} - \mathbb{E}(\hat{\beta}))^2) + 2(\mathbb{E}(\hat{\beta}) - \beta)(\mathbb{E}(\hat{\beta}) - \mathbb{E}(\hat{\beta}))
\]
\[
= \mathbb{E}((\mathbb{E}(\hat{\beta}) - \beta)^2) + \mathbb{E}((\hat{\beta} - \mathbb{E}(\hat{\beta}))^2)
\].

The term \(\mathbb{E}((\mathbb{E}(\hat{\beta}) - \beta)^2) \) is clearly the variance of the estimate \(\hat{\beta} \). The other term \(\mathbb{E}((\mathbb{E}(\hat{\beta}) - \beta)^2) \) measures how far away the “best” estimate is from the true value, and it is common to define bias(\(\hat{\beta} \)) = \(\mathbb{E}(\mathbb{E}(\hat{\beta}) - \beta) \). With this notation, we have that
\[
\mathbb{E}((\hat{\beta} - \beta)^2) = \text{bias}^2(\hat{\beta}) + \text{var}(\hat{\beta}).
\]

This equation states that the expected estimation error (as measured by the squared loss) is equal to the bias-squared plus the variance, and in fact there is a tradeoff between these two aspects in an estimate.

It is worth making three comments. The first is that if bias(\(\hat{\beta} \)) = \(\mathbb{E}(\mathbb{E}(\hat{\beta}) - \beta) = 0 \), then the estimate \(\hat{\beta} \) is said to be unbiased. Second, this bias-variance tradeoff exists for vector-valued parameters \(\beta \in \mathbb{R}^p \), for nonparametric estimates, and other models. Lastly, the term overfit is sometimes used to refer to a model with low bias but extremely high variance.