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Bias-VAriANCE TRADEOFF

1 Geometric Interpretation of OLS

Recall the optimization formulation of OLS,

B = argmin |V = X B3,

where the variables are as defined before. The basic tension in the problem above is that in general
no exact solution exists to the linear equation

Y = Xp;

otherwise we could use linear algebra to compute 3, and this value would be a minimizer to the
optimization problem written above.

‘Though no exact solution exists to Y = X 3, an interesting question to ask is whether there is
some related linear equation for which an exact solution exists. Because the noise is in Y and not

X, we can imagine that we would like to pick some Y such that Y = X3 has an exact solution.
Recall from linear algebra, that this is equivalent to asking that Y € R(X) (i.e., Y is in the range
space of X'). Now if we think of Y as true signal, then we can decompose Y as

Y =Y + AY,

where AY represents orthogonal noise. Because — from Fredholm’s theorem in linear algebra — we
know that the range space of X is orthogonal to the null space of X’ (i.e., R(X) L N (X)), it must
be the case that AY € N(X') since we defined Y such that Y € R(X). As a result, premultiplying
Y =Y +AY by X' gives

XY =XY +X'AY = X'Y.
The intuition is that premultiplying by X’ removes the noise component. And because Y € R(X)
and Y = X 3, we must have that

XY =XV =XX§8.

Solving this gives 5 = (X’X)~*(X'Y’), which is our regular equation for the OLS estimate.



2 Local Linear Regression

As seen above, a geometric perspective to regression problems can be quite valuable. Consider a
regression model

y=f(z)+e
in which f(-) is known to be highly nonlinear but of unknown structure. A nonparametric approach
is natural, and one nonparametric method is known as local linear regression (LLR). The idea of
this method is that if f(-) has sufficient smoothness (say twice-differentiable), then the model will
look linear in small regions of input-space. Suppose that we consider points in input space nearby
¢, then intuitively our model looks like

y = Bolwo] + Zﬁj[mo] (2 —x) e

for x near zy (e.g., ||z — zo|| < h for some small h > 0). The square brackets [z] are used to
represent the fact that the value of 5 will vary for different values of z.

'The idea of a neighborhood of radius h is central to LLR. It is customary in statistics to call
this h the bandwidth. In this method, we select points within a radius of i from xy. Furthermore,
we can weight the points accordingly so that points closer to x are given more weight than those
points further from . To do this, we define a kernel function K (u) : R — R which has the
properties

1. Finite Support — K (u) = 0 for |u| > 1;
2. Even Symmetry — K (u) = K(—u);
3. Positive Values — K (u) > 0 for |u| < 1.

A canonical example is the Epanechnikov kernel
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It turns out that the particular shape of the kernel function is not as important as the bandwidth h.
If we choose a large h, then the local linear assumption is not accurate. On the other hand, if we
choose a very small h, then the estimate will not be accurate because only a few data points will be
considered. It turns out that this tradeoff in the value of h is a manifestation of the bias-variance
tradeoft; however, being able to quantify this requires understanding stochastic convergence.

Before we discuss this tradeoft in more detail, we describe the LLR. The idea is to perform a
weighted-variant of OLS by using a kernel function and a bandwidth % to provide the weighting.
The LLR estimate y[o], B[] is given by the minimizer to the following optimization
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Now if we define a weighting matrix
Wi, = diag (K (o1 — woll/B), ..., K (2 — 2ol/B)),

then we can rewrite this optimization as
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where 1,, is a real-valued vector of all ones and of length dimension n and Xy = X — x(1,,. This
is identical to the OLS optimization, and so we can use that answer to conclude that

[%[[;0]]] (L, X Wi (L X)) (L Xo] WaY).

3 Bias-Variance Tradeoff

Consider the case of parametric regression with 8 € R, and suppose that we would like to analyze
the expectation of the squared loss of the difference between a estimate 3 and the true parameter
B. In particular, we have that

E((8 - B)*) =E((B—E(B) +E(B) — B)?)
=E((E(B) — B)*) + E((B —E(B))*) + 2E((E(B) — B)(B — E(B))
=E((E(B) — 8)*) + E((B —E(B))*) + 2(E(B) — B)(E(B) — E(B))
=E((E(B) — B)*) +E((B —E(B))?).

The term E((B - E(B))Z) is clearly the variance of the estimate /3. The other term E((E(B) —B)?)
measures how far away the “best” estimate is from the true value, and it is common to define

A

bias(3) = E(E(B) — 3). With this notation, we have that

E((3 — 8)?) = (bias(B))? + var(3).

This equation states that the expected estimation error (as measured by the squared loss) is equal to
the bias-squared plus the variance, and in fact there is a tradeoft between these two aspects in an
estimate.

It is worth making three comments. The first is that if bias(3) = E(E(@) — ) =0, then
the estimate 3 is said to be unbiased. Second, this bias-variance tradeoff exists for vector-valued

parameters 3 € RP, for nonparametric estimates, and other models. Lastly, the term overfi# is
sometimes used to refer to an model with low bias but extremely high variance.
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