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1 Polytope Constraints

So far, we have not considered constraints on our input un or states xn, when designing feedback
controllers for LTI systems in discrete-time; however, there are many applications in which we
would like to impose constraints on both the inputs and states. In some sense, though the con-
straints often arise from physical or economic limitations on the system being modeled, we get
to design the constraints that we use for engineering. Specifically, we can choose any represen-
tation of constraints that respects the physical or economic limitations of the system, even if our
constraints are more conservative than needed. Such choices can be necessary for the purpose of
efficient computation.

In fact, a fairly broad class of constraints with useful computational and mathematical proper-
ties can be defined by bounded convex polytopes, which can be defined as the convex hull of the set
of points. Note that when we refer to polytopes in the future, we will specifically mean bounded
convex polytopes. e reason that polytopes are an attractive approach to defining constraints is
that they can be represented as the intersection of half-spaces. Recall that a half-space can be rep-
resented by f ′

ix ≤ hi, and so the intersection of half-spaces can be represented by multiple linear
inequalities: Fx ≤ h.

So if we have a polytope X = {x : Fx ≤ h}, then the constraint that xn ∈ X means that we
would like xn such that Fxn ≤ h. We will often refer to constraints on the states and inputs by
referring to the polytopes in which they lie; that is, we will ask that xn ∈ X and un ∈ U , where
X ,U are polytopes.

1.1 B C

A common type of constraint are box constraints. For a vector xn ∈ Rp, a box constraint is that
there exists ai, bi for i = 1, . . . , p such that ai ≤ xi

n ≤ bi for all i. It turns out that we can express
these constraints as a polytope:

xn ∈ X = {x : xi ≤ bi,−xi ≤ −ai,∀i}.

1.2 L T  P

We define the linear transform T of a polytope P = {u : Fu ≤ h} as the polytope

TP = {Tu : u ∈ P}.

1



2 Maximal Output Invariant Sets

Consider an LTI system in discrete time:

xn+1 = Axn +Bun,

where (A,B) is stabilizable. And assume that we have chosen a K such that using the state-
feedback controller un = Kxn leads to a stable system xn+1 = (A + BK)xn. Now consider this
same system, and suppose that we have polytopic constraints: In particular, we require that xn ∈ X
and un ∈ U for all n ≥ 0. A natural question to ask is: Does there exist a set Ω such that if x0 ∈ Ω,
then the controller un = Kxn ensures that both constraints are satisfied. In mathematical terms,
we would like this set Ω to achieve (a) constraint satisfaction

Ω ⊆ {x : x ∈ X ;Kx ∈ U},

and (b) control invariance
(A+BK)Ω ⊆ Ω.

It can be shown that if 0 ∈ X and 0 ∈ U , then the set Ω can be represented by a polytope with
a finite number of constraints. ere is also an algorithm to compute this set:

input : X = {x : Fxx ≤ hx} and U = {u : Fuu ≤ hu}
input : A,B,K

output: Ω
set t← 0;
set k1 ← rows(hx);
set ku ← rows(hu);
repeat

for j ← 1 to k1 do
set L∗

j ← max{(Fx)j(A+BK)t+1x− (hx)j : (A+BK)kx ∈ X , K(A+BK)kx ∈
U ,∀k = 0, . . . , t};

end
for j ← 1 to k2 do

set M∗
j ← max{(Fu)jK(A+BK)t+1x− (hu)j : (A+BK)kx ∈

X , K(A+BK)kx ∈ U , ∀k = 0, . . . , t};
end
set t← t+ 1;

until L∗
i ≤ 0,∀i = 1, . . . , k1 andM∗

i ≤ 0, ∀i = 1, . . . , k2;
set t∗ ← t− 1;
set Ω = {x : (A+BK)kx ∈ X , K(A+BK)kx ∈ U ,∀k = 0, . . . , t∗};

Note that the Ω returned by this algorithm is a polytope, and so we can rearrange terms to express
this set as Ω = {x : Fωx ≤ hω}.
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