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1 Nuisance Parameters

Consider the basic linear model yi = x′
iβ + ϵi, where ϵi is i.i.d. noise with zero noise with finite

variance. So far, we have focused on the question of estimating β; but, we could also ask the question
whether it is possible to something about ϵi. e reason that we have not addressed this issue is that,
because the ϵi in this model represent random noise with zeromean, we do not gain any information
for the purposes of model prediction (i.e., estimating E[yi|xi] = x′

iβ) by estimating the ϵi (or
alternatively information about its distribution). However, if we are interested in understanding
the uncertainty of our model predictions, then it is valuable to estimate the distribution of ϵi.

ese ϵi are examples of nuisance parameters, which are any parameters that are not directly of
interest but must be considered in the estimation. (Note that the designation of a parameter as
a nuisance parameter is situationally dependent – in some applications, the nuisance parameter is
also of interest.) In general, we can have situations in which there are a finite number of nuisance
parameters or even an infinite number of nuisance parameters. ere is no standard approach to
handling nuisance parameters in regression problems. One approach is to estimate the nuisance
parameters anyways, but unfortunately it is not always possible to estimate the nuisance parame-
ters. Another approach is to consider the nuisance parameters as “worst-case disturbances” and use
minmax estimators, which can be thought of as game-theoretic M-estimators.

1.1 G N  L M

Consider the linear model in the situation where ϵi ∼ N (0, σ2) for some unknown variance σ2.
Recall that the M-estimator was given by

β̂ = argmax
β

n∑
i=1

(
− (yi − x′

iβ)
2/(2σ2)− 1

2
log σ2 − 1

2
log(2π)

)
.

In this case, the nuisance parameter is σ2. e way this parameter was handled was to observe that
the maximizer is independent of σ2, which allowed us to rewrite the M-estimator as

β̂ = argmax
β

n∑
i=1

−(yi − x′
iβ)

2 = argmin
β

n∑
i=1

(yi − x′
iβ)

2 = argmin
β

∥Y −Xβ∥22.

1



1.2 G N  L M

Now consider the linear model in the case where ϵi is a generic zero mean distribution, meaning
that it is of some unknown distribution. It turns out that we can estimate each ϵi in a consistent
manner. Suppose that we assume

1. the norm of the xi is deterministically bounded: ∥xi∥ ≤ M for a finite M < ∞;

2. conditions under which OLS β̂ is a consistent estimate of β.

en we can use OLS to estimate the ϵi. Define

ϵ̂i = yi − x′
iβ̂,

and note that

|ϵ̂i − ϵi| = |(yi − x′
iβ̂)− ϵi|

= |x′
iβ + ϵi − x′

iβ̂ − ϵi|
= |x′

i(β − β̂)|
≤ ∥xi∥ · ∥(β − β̂)∥,

where in the last line we have used the Cauchy-Schwarz inequality. And because of our assump-
tions, we have that |ϵ̂i − ϵi| = Op(1/

√
n).

Now in turn, our estimates of ϵi can be used to estimate other items of interest. For example,
we can use our estimates of ϵ̂i to estimate population parameters such as variance:

σ̂2 =
1

n

n∑
i=1

ϵ̂2i .

is estimator is consistent:

|σ̂2 − σ2| =

∣∣∣∣∣ 1n
n∑

i=1

ϵ̂2i −
1

n

n∑
i=1

ϵ2i +
1

n

n∑
i=1

ϵ2i − σ2

∣∣∣∣∣
≤

∣∣∣∣∣1n
n∑

i=1

ϵ̂2i −
1

n

n∑
i=1

ϵ2i

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

ϵ2i − σ2

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣∣ϵ̂2i − ϵ2i

∣∣∣∣∣+
∣∣∣∣∣1n

n∑
i=1

ϵ2i − σ2

∣∣∣∣∣.
where we have made use of the triangle inequality in the second and third lines. Next note that
|ϵ̂2i −ϵ2i | = Op(1/

√
n) by a version of the continuous mapping theorem and that | 1

n

∑n
i=1 ϵ

2
i −σ2| =

Op(1/
√
n) because of the CLT. us, we have that |σ̂2 − σ2| = Op(1/

√
n).
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2 Partially Linear Model

Consider the following model
yi = x′

iβ + g(zi) + ϵi,

where yi ∈ R, xi, β ∈ Rp, zi ∈ Rq, g(·) is an unknown nonlinear function, and ϵi are noise. e
data xi, zi are i.i.d., and the noise has conditionally zero mean E[ϵi|xi, zi] = 0 with unknown and
bounded conditional variance E[ϵ2i |xi, zi] = σ2(xi, zi). is is known as a partially linear model
because it consists of a (parametric) linear part x′

iβ and a nonparametric part g(zi). One can think
of the g(·) as an infinite-dimensional nuisance parameter.

3 Single-Index Model

Consider the following model
yi = g(x′

iβ) + ϵi,

where yi ∈ R, xi, β ∈ Rp, g(·) is an unknown nonlinear function, and ϵi are noise. e data xi

are i.i.d., and the noise has conditionally zero mean E[ϵi|xi] = 0. Such single-index models can
be used for asset pricing, and here the g(·) can be thought of as an infinite-dimensional nuisance
parameter.
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