IEOR 151 - Lecture 4 Composite Minimax

1 Numerical Example for Point Gaussian Example

1.1 Computing γ

Suppose $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ (for $n=20$ data points) is iid data drawn from a normal distribution with mean μ and variance $\sigma^{2}=20$. Here, the mean is unknown, and we would like to determine if the mean is $\mu_{0}=0$ (decision d_{0}) or $\mu_{1}=4$ (decision $\left.d_{1}\right)$. Lastly, suppose our loss function is

- $L\left(\mu_{0}, d_{0}\right)=0$ and $L\left(\mu_{0}, d_{1}\right)=a=3 ;$
- $L\left(\mu_{1}, d_{0}\right)=b=2$ and $L\left(\mu_{1}, d_{1}\right)=0$.

Recall that the minimax hypothesis test is given by

$$
\delta(X)= \begin{cases}d_{0}, & \text { if } \bar{X} \leq \gamma_{n}^{*} \\ d_{1}, & \text { if } \bar{X}>\gamma_{n}^{*}\end{cases}
$$

where γ_{n}^{*} is the value of γ that satisfies

$$
a \cdot\left(1-\Phi\left(\sqrt{n}\left(\gamma-\mu_{0}\right) / \sigma\right)\right)=b \cdot \Phi\left(\sqrt{n}\left(\gamma-\mu_{1}\right) / \sigma\right)
$$

The $\Phi(\cdot)$ denotes the cdf of a normal distribution and can be found from a standard z-table or using a computer. The trick to finding this γ value when using a z-table is to observe that the left hand side (LHS) decreases as γ increases, while the right hand side (RHS) increases while γ increases.

In our case, we would like to find the γ that satisfies

$$
3 \cdot(1-\Phi(\sqrt{20}(\gamma-0) / \sqrt{20}))=2 \cdot \Phi(\sqrt{20}(\gamma-4) / \sqrt{20}),
$$

or equivalently

$$
3 \cdot(1-\Phi(\gamma-0))=2 \cdot \Phi(\gamma-4)
$$

We will do a search by hand to find the corresponding value of γ. For instance, if our first guess is $\gamma=2$, then we find from the z-table that $\Phi(2)=0.9773$ and $\Phi(2-4)=$ $\Phi(-2)=1-\Phi(2)=0.0227$. Thus, we have $3 \cdot(1-\Phi(2))=3 \cdot(1-0.9733)=0.0801$ and $2 \cdot \Phi(-2)=0.0454$. Since the LHS is larger, this means we should increase γ.

Now suppose our second guess is $\gamma=2.5$. Then, $\Phi(2.5)=0.9938$ and $\Phi(2.5-4)=$ $\Phi(-1.5)=1-\Phi(1.5)=1-0.9332$. Thus, we have that $L H S=3 \cdot(1-0.9938)=0.0186$ and $R H S=2 \cdot(1-0.9332)=0.1336$. Now, the RHS is larger and so we should decrease our guess of γ. Since we know that $\gamma=2$ is too small, we could try half-way in between with $\gamma=2.25$.

We can summarize the steps We conclude the process when we have sufficient accuracy

Step	γ	LHS	RHS
1	2	0.0801	0.0454
2	2.5	0.0186	0.1336
3	2.25	0.0367	0.0801
4	2.13	0.0498	0.0615
5	2.06	0.0591	0.0524
6	2.09	0.0549	0.0561
7	2.07	0.0577	0.0536
8	2.08	0.0563	0.0549

in our computed value of γ. In this case, we know that γ should be between 2.08 and 2.09, and so we set $\gamma_{n}^{*}=2.085$. Computing γ to more precision would require a computer.

1.2 Differences in γ AS n Changes

In the above example, we computed γ_{n}^{*} for a single value of $n=20$. A natural question to ask is what happens to γ as n increase. In the table below, the value of γ_{n}^{*} for different values of n is given. These values were computed using a computer.

n	γ_{n}^{*}
5	2.2658
10	2.1536
20	2.0855
100	2.0194
200	2.0099
300	2.0068

The trend is clear: As n increases, γ_{n}^{*} is decreasing towards 2. The intuition is that when we have little data, we err on the side of deciding d_{0} since otherwise we incur a larger loss if we incorrectly decide d_{1}. As we gather more data, we are more confident that the sample average is close to the true average, and so we can use a less biased threshold. Effectively, with large amounts of data the threshold converges to $\left(\mu_{0}+\mu_{1}\right) / 2$.

2 Composite Gaussian Example

In our discussion so far, we have considered a situation in which the two hypothesis each represent a distribution with a single mean. However, another class of interesting and more
general hypotheses are those in which we would like to discrimination between $H_{0}: \mu \leq$ μ_{0} versus $H_{1}: \mu>\mu_{0}$. And suppose we keep a similar loss function of $L\left(H_{0}, d_{0}\right)=0$, $L\left(H_{0}, d_{1}\right)=a, L\left(H_{1}, d_{0}\right)=b$, and $L\left(H_{1}, d_{1}\right)=0$. In the minimax framework, this class of hypotheses are not well-posed because the worst case scenario occurs when "nature" selects $\mu=\mu_{0}$, because then it is not possible to distinguish between d_{0} and d_{1}.

More rigorously, what happens is that the minimax procedure is defined by solving the optimization problem

$$
\inf _{\delta(u)} \sup _{\mu} R(\mu, \delta)
$$

And nature will choose

$$
\begin{aligned}
\sup _{\mu: \mu \leq \mu_{0}} R(\mu, \delta) & \left.=\sup _{\mu: \mu \leq \mu_{0}} a \cdot \mathbb{P}_{\mu}\left(d_{1}=\delta(X)\right)\right\} \\
& \left.=a \cdot \mathbb{P}_{\mu_{0}}\left(d_{1}=\delta(X)\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\sup _{\mu: \mu>\mu_{0}} R(\mu, \delta) & \left.=\sup _{\mu: \mu>\mu_{0}} b \cdot \mathbb{P}_{\mu}\left(d_{0}=\delta(X)\right)\right\} \\
& \left.=b \cdot \mathbb{P}_{\mu_{0}}\left(d_{0}=\delta(X)\right)\right\}
\end{aligned}
$$

This last step is subtle: Even though nature is constrained to choose $\mu>\mu_{0}$, it can choose μ to be arbitarily close to μ_{0}. Thus, in the worst case scenario described by the minimax framework, nature will effectively set $\mu=\mu_{0}$ even though we are in the case $H 1: \mu>\mu_{0}$.

Because of this pathological behavior, the best we can do with a minimax procedure is to make a purely probabilistic decision:

$$
\delta(X)= \begin{cases}d_{0}, & \text { with probability } a /(a+b) \\ d_{1} & \text { w.p. } b /(a+b)\end{cases}
$$

This is not a useful rule for decision making, and so we must consider alternative classes of hypotheses.

One interesting class of hypotheses is the following: Suppose $X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is iid data drawn from a normal distribution with mean μ and known variance σ^{2}; here, the mean is unknown. The decision we would like to make is whether the mean is $H_{0}: \mu \leq \mu_{0}$ or $H_{1}: \mu \geq \mu_{1}$. We are indifferent in the case where $I: \mu \in\left(\mu_{0}, \mu_{1}\right)$. Our loss function also encodes this region of indifference

- $L\left(H_{0}, d_{0}\right)=0, L\left(H_{0}, d_{1}\right)=a$;
- $L\left(H_{1}, d_{0}\right)=b, L\left(H_{1}, d_{1}\right)=0$;
- $L\left(I, d_{0}\right)=0, L\left(I, d_{1}\right)=0$.

It turns out that this composite hypothesis test has the same minimax procedure as the point hypothesis test. To summarize, we choose γ so that it satisfies

$$
a \cdot\left(1-\Phi\left(\sqrt{n}\left(\gamma-\mu_{0}\right) / \sigma\right)\right)=b \cdot \Phi\left(\sqrt{n}\left(\gamma-\mu_{1}\right) / \sigma\right)
$$

where $\Phi(\cdot)$ is the cdf of a normal distribution. If we call this resulting value γ^{*}, then our decision rule is

$$
\delta(X)= \begin{cases}d_{0}, & \text { if } \bar{X} \leq \gamma^{*} \\ d_{1}, & \text { if } \bar{X}>\gamma^{*}\end{cases}
$$

Showing that this decision rule is a minimax procedure is beyond the scope of the class.

