IEOR 151 — Lecture 21
Little’s Law

1 Little’s Law

Suppose that we define the following variables
e [ — average number of customers in system;
e )\ — average arrival rate;
o W — average time in the system.

Then a useful relationship for queues is Little’s Law, which states that
L= \W.

To see why this relationship is useful, consider the M/M/1 queue from last lecture. There
we showed that the average number of customers in the system is given by

L=p/(1-p), for p=A/p,

where A is the average arrival rate and p is the average service rate. Using Little’s Law, we
have that the average time in the system for a customer in an M/M/1 queue is given by
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1.1  VARIANTS OF LITTLE’S LAaw

There are other versions of Little’s Law. Suppose that we define the following additional
variables

e L, — average number of customers waiting to be served,;
e [, — average number of customers being served;
e IV, — average time in the queue waiting to be served;

o W, — average service time.



Then, we also have
L, =W,
L, = \W,.

Also, note that because the average time in the system is the average time spent waiting to
be served and the average serving time, we have that

W =W, + W,
Again returning to the example of the M/M/1 queue from last lecture, we have that
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2 M/M/s Queue with s Lines

Now, we turn our attention to a Markovian queue with s servers, average arrival rate A, and
average service rate for each queue of u. First, we examine the situation in which there is
a single line for each server. This is the situation at, for instance, Safeway. In our model,
we will assume that each customer randomly chooses a line. Then, this is simply s distinct
M/M/1 queues with average arrival rate A\/s and average service rate of y, for each queue.
Using the results for M/M/1 queues we have that
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3 M/M/s Queue with One Line

Now, we turn our attention to a Markovian queue with s servers, average arrival rate A, and
average service rate for each queue of u. Here, we examine the situation in which there is a
single line. This is the situation at, for instance, Fry’s Electronics or the baggage check-in
line for an airline at the airport. Some math gives that
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where
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is the probability that all servers are occupied. An approximation is that
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It is interesting to compare an M/M /s queue with one line to an M/M/s queue with s lines.
The time spent in an M/M/s queue with s lines is longer than the time spent in an M/M/s
queue with one line. The intuition is that having just one line allows for greater utilization
of all s servers.

4 M/M/oo Queue

Some systems are modeled using an infinite number of servers. In this model, the service
rate is state-dependent and is given by nu where n is the number of customers in line, and g
is the service rate for a single customer. Some calculations give that L = A/pand W = 1/p.

5 More Information and References

The material in these notes follows that of the course textbook “Service Systems” by Mark
Daskin and of the Wikipedia article on “Poison process”.



