IEOR 151 - Lecture 2 Probability Review

1 Definitions in Probability and Their Consequences

1.1 Defining Probability

A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ consists of three elements:

- A sample space Ω is the set of all possible outcomes.
- The σ-algebra \mathcal{F} is a set of events, where an event is a set of outcomes.
- The measure \mathbb{P} is a function that gives the probability of an event. This function \mathbb{P} satisfies certain properties, including: $\mathbb{P}(A) \geq 0$ for an event $A, \mathbb{P}(\Omega)=1$, and $\mathbb{P}\left(A_{1} \cup A_{2} \cup \ldots\right)=\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)+\ldots$ for any countable collection A_{1}, A_{2}, \ldots of mutually exclusive events.

Some useful consequences of this definition are:

- For a sample space $\Omega=\left\{o_{1}, \ldots, o_{n}\right\}$ in which each outcome o_{i} is equally likely, it holds that $\mathbb{P}\left(o_{i}\right)=1 / n$ for all $i=1, \ldots, n$.
- $\mathbb{P}(\bar{A})=1-\mathbb{P}(A)$, where \bar{A} denotes the complement of event A.
- For any two events A and $B, \mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$.
- If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- Consider a finite collection of mutually exclusive events B_{1}, \ldots, B_{m} such that $B_{1} \cup \ldots \cup$ $B_{m}=\Omega$ and $\mathbb{P}\left(B_{i}\right)>0$. For any event A, we have $\mathbb{P}(A)=\sum_{k=1}^{m} \mathbb{P}\left(A \cap B_{k}\right)$.

1.2 Conditional Probability

The conditional probability of A given B is defined as

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Some useful consequences of this definition are:

- Law of Total Probability: Consider a finite collection of mutually exclusive events B_{1}, \ldots, B_{m} such that $B_{1} \cup \ldots \cup B_{m}=\Omega$ and $\mathbb{P}\left(B_{i}\right)>0$. For any event A, we have

$$
\mathbb{P}(A)=\sum_{k=1}^{m} \mathbb{P}\left[A \mid B_{k}\right] \mathbb{P}\left(B_{k}\right)
$$

- Bayes' Theorem: It holds that

$$
\mathbb{P}[B \mid A]=\frac{\mathbb{P}[A \mid B] \mathbb{P}(B)}{\mathbb{P}(A)}
$$

1.3 Independence

Two events A_{1} and A_{2} are defined to be independent if and only if $\mathbb{P}\left(A_{1} \cap A_{2}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2}\right)$. Multiple events $A_{1}, A_{2}, \ldots, A_{m}$ are mutually independent if and only if for every subset of events

$$
\left\{A_{i_{1}}, \ldots, A_{i_{n}}\right\} \subseteq\left\{A_{1}, \ldots, A_{m}\right\}
$$

the following holds:

$$
\mathbb{P}\left(\cap_{k=1}^{n} A_{i_{k}}\right)=\prod_{k=1}^{n} \mathbb{P}\left(A_{i_{k}}\right) .
$$

Multiple events $A_{1}, A_{2}, \ldots, A_{m}$ are pairwise independent if and only if every pair of events is independent, meaning $\mathbb{P}\left(A_{n} \cap A_{k}\right)=\mathbb{P}\left(A_{n}\right) \mathbb{P}\left(A_{k}\right)$ for all distinct pairs of indices n, k. Note that pairwise independence does not always imply mutual independence! Lastly, an important property is that if A and B are independent and $\mathbb{P}(B)>0$, then $\mathbb{P}[A \mid B]=\mathbb{P}(A)$.

1.4 Random Variables

A random variable is a function $X(\omega): \Omega \rightarrow \mathcal{B}$ that maps the sample space Ω to a subset of the real numbers $\mathcal{B} \subseteq \mathbb{R}$, with the property that the set $\{w: X(\omega) \in b\}=X^{-1}(b)$ is an event for every $b \in \mathcal{B}$. The cumulative distribution function (cdf) of a random variable X is defined by

$$
F_{X}(u)=\mathbb{P}(\omega: X(\omega) \leq u) .
$$

The probability density function (pdf) of a random variable X is any function $f_{X}(u)$ such that

$$
\mathbb{P}(X \in A)=\int_{A} f_{X}(u) d u
$$

for any well-behaved set A.

1.5 Expectation

The expectation of $g(X)$, where X is a random variable and $g(\cdot)$ is a function, is given by

$$
\mathbb{E}(g(X))=\int g(u) f_{X}(u) d u
$$

Two important cases are the mean

$$
\mu(X)=\mathbb{E}(X)=\int u f_{X}(u) d u
$$

and variance

$$
\sigma^{2}(X)=\mathbb{E}\left((X-\mu)^{2}\right)=\int(u-\mu)^{2} f_{X}(u) d u
$$

Two useful properties are that if λ is a constant then

$$
\begin{aligned}
& \mathbb{E}(\lambda X)=\lambda \mathbb{E}(X) \\
& \sigma^{2}(\lambda X)=\lambda^{2} \sigma^{2}(X) .
\end{aligned}
$$

2 Common Distributions

2.1 Uniform Distribution

A random variable X with uniform distribution over support $[a, b]$ is denoted by $X \sim \mathcal{U}(a, b)$, and it is the distribution with pdf

$$
f_{X}(u)= \begin{cases}\frac{1}{b-a}, & \text { if } u \in[a, b] \\ 0, & \text { otherwise }\end{cases}
$$

The mean is $\mu=(a+b) / 2$, and the variance is $\sigma^{2}=(b-a)^{2} / 12$.

2.2 Gaussian/Normal Distribution

A random variable X with Guassian/normal distribution and mean μ and variance σ^{2} is denoted by $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, and it is the distribution with pdf

$$
f_{X}(u)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(u-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

For a set of iid (mutually independent and identically distributed) Gaussian random variables $X_{1}, X_{2}, \ldots, X_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, consider any linear combination of the random variables.

$$
S=\lambda_{1} X_{1}+\lambda_{2} X_{2}+\ldots+\lambda_{n} X_{n}
$$

The mean of the linear combination is

$$
\mathbb{E}(S)=\mu \cdot \sum_{i=1}^{n} \lambda_{i}
$$

and the variance of the linear combination is

$$
\sigma^{2}(S)=\sigma^{2} \cdot \sum_{i=1}^{n} \lambda_{i}^{2}
$$

Note that in the special case where $\lambda_{i}=1 / n$ (which is also called a sample average):

$$
\bar{X}=1 / n \cdot \sum_{i=1} n X_{i}
$$

we have that $\mathbb{E}(\bar{X})=\mathbb{E}(X)$ and $\sigma^{2}(\bar{X})=\sigma^{2} / n$ (which also implies that $\lim _{n \rightarrow \infty} \sigma^{2}(\bar{X})=0$).

2.3 Chi-Squared Distribution

A random variable X with chi-squared distribution and k-degrees of freedom is denoted by $X \sim \chi^{2}(k)$, and it is the distribution of the random variable defined by

$$
\sum_{i=1}^{n} Z_{i}^{2}
$$

where $Z_{i} \sim \mathcal{N}(0,1)$. The mean is $\mathbb{E}(X)=k$, and the variance is $\sigma^{2}(X)=2 k$.

2.4 Exponential Distribution

A random variable X with exponential distribution is denoted by $X \sim \mathcal{E}(\lambda)$, where $\lambda>0$ is the rate, and it is the distribution with pdf

$$
f_{X}(u)=\left\{\begin{array}{l}
\lambda \exp (-\lambda u), \quad \text { if } u \geq 0 \\
\text { otherwise }
\end{array}\right.
$$

The cdf is given by

$$
F_{X}(u)=\left\{\begin{array}{l}
1-\exp (-\lambda u), \quad \text { if } u \geq 0 \\
\text { otherwise }
\end{array}\right.
$$

and so $\mathbb{P}(X>u)=\exp (-\lambda u)$ for $u \geq 0$. The mean is $\mu=\frac{1}{\lambda}$, and the variance is $\sigma^{2}=\frac{1}{\lambda^{2}}$. One of the most important aspects of an exponential distribution is that is satisfies the memoryless property:

$$
\mathbb{P}[X>s+t \mid X>t]=\mathbb{P}(X>s), \text { for all values of } s, t \geq 0
$$

