
IEOR 151 – Lecture 2

Probability Review

1 Definitions in Probability and Their Consequences

1.1 Defining Probability

A probability space (Ω,F ,P) consists of three elements:

• A sample space Ω is the set of all possible outcomes.

• The σ-algebra F is a set of events, where an event is a set of outcomes.

• The measure P is a function that gives the probability of an event. This function
P satisfies certain properties, including: P(A) ≥ 0 for an event A, P(Ω) = 1, and
P(A1 ∪ A2 ∪ . . .) = P(A1) + P(A2) + . . . for any countable collection A1, A2, . . . of
mutually exclusive events.

Some useful consequences of this definition are:

• For a sample space Ω = {o1, . . . , on} in which each outcome oi is equally likely, it holds
that P(oi) = 1/n for all i = 1, . . . , n.

• P(A) = 1− P(A), where A denotes the complement of event A.

• For any two events A and B, P(A ∪B) = P(A) + P(B)− P(A ∩B).

• If A ⊆ B, then P(A) ≤ P(B).

• Consider a finite collection of mutually exclusive events B1, . . . , Bm such that B1∪ . . .∪
Bm = Ω and P(Bi) > 0. For any event A, we have P(A) =

∑m
k=1 P(A ∩Bk).

1.2 Conditional Probability

The conditional probability of A given B is defined as

P[A|B] =
P(A ∩B)

P(B)
.

Some useful consequences of this definition are:
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• Law of Total Probability: Consider a finite collection of mutually exclusive events
B1, . . . , Bm such that B1 ∪ . . . ∪Bm = Ω and P(Bi) > 0. For any event A, we have

P(A) =
∑m

k=1 P[A|Bk]P(Bk).

• Bayes’ Theorem: It holds that

P[B|A] =
P[A|B]P(B)

P(A)
.

1.3 Independence

Two events A1 and A2 are defined to be independent if and only if P(A1∩A2) = P(A1)P(A2).
Multiple events A1, A2, . . . , Am are mutually independent if and only if for every subset of
events

{Ai1 , . . . , Ain} ⊆ {A1, . . . , Am},

the following holds:
P(∩nk=1Aik) = Πn

k=1P(Aik).

Multiple events A1, A2, . . . , Am are pairwise independent if and only if every pair of events
is independent, meaning P(An ∩ Ak) = P(An)P(Ak) for all distinct pairs of indices n, k.
Note that pairwise independence does not always imply mutual independence! Lastly, an
important property is that if A and B are independent and P(B) > 0, then P[A|B] = P(A).

1.4 Random Variables

A random variable is a function X(ω) : Ω → B that maps the sample space Ω to a subset
of the real numbers B ⊆ R, with the property that the set {w : X(ω) ∈ b} = X−1(b) is an
event for every b ∈ B. The cumulative distribution function (cdf) of a random variable X is
defined by

FX(u) = P(ω : X(ω) ≤ u).

The probability density function (pdf) of a random variable X is any function fX(u) such
that

P(X ∈ A) =

∫
A

fX(u)du,

for any well-behaved set A.

1.5 Expectation

The expectation of g(X), where X is a random variable and g(·) is a function, is given by

E(g(X)) =

∫
g(u)fX(u)du.
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Two important cases are the mean

µ(X) = E(X) =

∫
ufX(u)du,

and variance

σ2(X) = E((X − µ)2) =

∫
(u− µ)2fX(u)du.

Two useful properties are that if λ is a constant then

E(λX) = λE(X)

σ2(λX) = λ2σ2(X).

2 Common Distributions

2.1 Uniform Distribution

A random variable X with uniform distribution over support [a, b] is denoted by X ∼ U(a, b),
and it is the distribution with pdf

fX(u) =

{
1
b−a , if u ∈ [a, b]

0, otherwise
.

The mean is µ = (a+ b)/2, and the variance is σ2 = (b− a)2/12.

2.2 Gaussian/Normal Distribution

A random variable X with Guassian/normal distribution and mean µ and variance σ2 is
denoted by X ∼ N (µ, σ2), and it is the distribution with pdf

fX(u) =
1√

2πσ2
exp

(
−(u− µ)2

2σ2

)
.

For a set of iid (mutually independent and identically distributed) Gaussian random variables
X1, X2, . . . , Xn ∼ N (µ, σ2), consider any linear combination of the random variables.

S = λ1X1 + λ2X2 + . . .+ λnXn.

The mean of the linear combination is

E(S) = µ ·
n∑
i=1

λi,

and the variance of the linear combination is

σ2(S) = σ2 ·
n∑
i=1

λ2i .
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Note that in the special case where λi = 1/n (which is also called a sample average):

X = 1/n ·
∑
i=1

nXi

we have that E(X) = E(X) and σ2(X) = σ2/n (which also implies that limn→∞ σ
2(X) = 0).

2.3 Chi-Squared Distribution

A random variable X with chi-squared distribution and k-degrees of freedom is denoted by
X ∼ χ2(k), and it is the distribution of the random variable defined by

n∑
i=1

Z2
i ,

where Zi ∼ N (0, 1). The mean is E(X) = k, and the variance is σ2(X) = 2k.

2.4 Exponential Distribution

A random variable X with exponential distribution is denoted by X ∼ E(λ), where λ > 0 is
the rate, and it is the distribution with pdf

fX(u) =

{
λ exp(−λu), if u ≥ 0,

otherwise
.

The cdf is given by

FX(u) =

{
1− exp(−λu), if u ≥ 0,

otherwise

and so P(X > u) = exp(−λu) for u ≥ 0. The mean is µ = 1
λ
, and the variance is σ2 = 1

λ2
.

One of the most important aspects of an exponential distribution is that is satisfies the
memoryless property:

P[X > s+ t|X > t] = P(X > s), for all values of s, t ≥ 0.
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