
IEOR 151 – Lecture 16

Capacitated Location Planning

1 Mathematical Model

We will consider extensions of different location planning models to the situation in which the
facilities have a maximum capacity of demand that the facility is able to serve. The model for
each model has similar elements: We represent the problem formulation using an undirected
graph G = (I, J, E), where the demand nodes are represented by a set of vertices i ∈ I,
the possible locations of the facilities are given by another set of vertices j ∈ J , and edges
ei,j ∈ E only exist between vertices from i ∈ I to those in j ∈ J . Furthermore, we assign
positive weights to the edges di,j ≥ 0, which represents a distance between vertices i and j.
Note that it is possible to have zero distance between a demand node and a possible facility
location. We assign positive weights to the demand nodes hi for i ∈ I, and this represents
the amount of demand at a particular node. Moreover, each facility has a maximum capacity
C of demand that can be served.

2 Capacitated p-Median Problem

In this model, we wish to place p facilities to minimize the (demand-weighted) average
distance between a demand node and the location in which a facility was placed. In this
extended model, there are constraints on the capacity of the facilities.

2.1 ILP Formulation

Because there are now capacity constraints for the facilities, we define a decision variable
Zi,j that describes the amount of demand at demand node i that is serviced by a facility
placed at j. We need to define another decision variable

Xj =

{
1, if facility located at j ∈ J

0, otherwise
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that describes the locations at which a facility is placed. Given these decision variables, we
can now formulate the capacitated p-median problem as the following ILP

min
∑
j∈J

∑
i∈I

di,jZi,j

s.t.
∑
j∈J

Zi,j = hi,∀i ∈ I

Zi,j ≥ 0,∀i ∈ I, j ∈ J

Zi,j ≤ hiXj,∀i ∈ I, j ∈ J∑
j∈J

Xj = p∑
i∈I

Zi,j ≤ C, ∀j ∈ J

Xj ∈ {0, 1},∀j ∈ J.

Each of these terms has associated intuition:

• The objective
∑

j∈J
∑

i∈I di,jZi,j is stating that we wish to minimize the demand-
weighted (i.e., weighted by hi) distance di,jZi,j summed over all facilities and demand
nodes.

• The first constraint
∑

j∈J Zi,j = hi implies that a demand node i must have all of its
demand met.

• The constraint Zi,j ≥ 0 says that the amount of demand served must be non-negative,
and Zi,j ≤ hiXj says that demand node i can be serviced by a facility at j only if there
is a facility at j, because if Xj = 0 then we must have that Zi,j = 0.

• The constraint
∑

j∈J Xj = p means that we must place exactly p facilities.

• The constraint
∑

i∈I Zi,j ≤ C says that a facility at j can service at most C amount
of demand.

• Lastly, the constraint that Xj ∈ {0, 1} forces this decision variables to be binary.

Note that we do NOT need a constraint of the form
∑

i∈I Zi,j ≤ CXj because if Xj = 0 then
we already have that Zi,j = 0.

3 Capacitated Vertex p-Center Problem

In this problem, we would like to place p facilities to minimize the maximum distance between
any demand node and its servicing facility. In this extended model, there are constraints on
the capacity of the facilities.
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3.1 ILP Formulation

Because there are now capacity constraints for the facilities, we define a decision variable
Zi,j that describes the amount of demand at demand node i that is serviced by a facility
placed at j. We define a decision variable

Yi,j =

{
1, if demand node i ∈ I assigned to facility located at j ∈ J

0, otherwise

that describes which demand nodes are serviced by which facility location. We need to define
another decision variable

Xj =

{
1, if facility located at j ∈ J

0, otherwise

that describes the locations at which a facility is placed. In contrast to the (capacitated)
p-median problem, we must define an additional decision variable Q that represents the
maximum distance between any demand node and its servicing facilities. Given these decision
variables, we can now formulate the capacitated vertex p-center problem as the following ILP

min Q

s.t.
∑
j∈J

Zi,j = hi,∀i ∈ I

Zi,j ≥ 0,∀i ∈ I, j ∈ J

Zi,j ≤ hiXj,∀i ∈ I, j ∈ J

Zi,j ≤ hiYi,j,∀i ∈ I, j ∈ J

Yi,j ≤ Xj,∀i ∈ I, j ∈ J∑
j∈J

Xj = p∑
i∈I

Zi,j ≤ C, ∀j ∈ J

Q ≥ di,jYi,j,∀i ∈ I, j ∈ J

Xj ∈ {0, 1},∀j ∈ J

Yi,j ∈ {0, 1},∀i ∈ I, j ∈ J.

Each of these terms has associated intuition:

• The objective Q is stating that we wish to minimize the maximum distance between
any demand node and its servicing facility.

• The first constraint
∑

j∈J Zi,j = hi implies that a demand node i must have all of its
demand met.
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• The constraint Zi,j ≥ 0 says that the amount of demand served must be non-negative,
and Zi,j ≤ hiXj says that demand node i can be serviced by a facility at j only if there
is a facility at j, because if Xj = 0 then we must have that Zi,j = 0.

• The constraint Yi,j ≤ Xj means that i can be served by j only if a facility is placed at
j, and Zi,j ≤ hiYi,j means that if Zi,j > 0 then Yi,j is forced to be 1 since it is binary.

• The constraint
∑

j∈J Xj = p means that we must place exactly p facilities.

• The constraint
∑

i∈I Zi,j ≤ C says that a facility at j can service at most C amount
of demand.

• The constraint Q ≥ di,jYi,j means that Q must be greater than the distance between
the i-th demand node and its servicing facility. And because we have this constraint
for each of the i ∈ I demand nodes and j ∈ J potential facility locations, this means
that Q must be greater than the distance of any demand node and its servicing facility.

• The constraints that Xj ∈ {0, 1} and Yi,j ∈ {0, 1} force these decision variables to be
binary.

Note that there is an important subtlety here: The constraint Zi,j ≤ hiYi,j means that if
Zi,j = 0 then Yi,j can be either 0 or 1. This may seem undesirable because if Zi,j = 0 then
this means that j is not servicing i, and so we would want Yi,j = 0. However, this condition
occurs implicitly because of the constraint Q ≥ di,jYi,j. If Zi,j = 0, then choosing Yi,j = 0 is
preferable since this would possibly allow Q to take on a smaller value.

4 Capacitated Set Covering Problem

In this problem, a facility can serve demand nodes that are within a given coverage distance
Dc from the facility. The problem is to place the minimum number of facilities so as to
ensure that all demand nodes can be served. In this extended model, there are constraints
on the capacity of the facilities. We define the indicator variable

ai,j =

{
1, if di,j ≤ Dc

0, otherwise

that describes if demand node at i ∈ I can be covered by a facility at j ∈ J if the coverage
distance is Dc.

4.1 ILP Formulation

Because there are now capacity constraints for the facilities, we define a decision variable
Zi,j that describes the amount of demand at demand node i that is serviced by a facility
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placed at j. We define a decision variable

Xj =

{
1, if facility located at j ∈ J

0, otherwise

that describes the locations at which a facility is placed. Given these decision variables, we
can now formulate the capacitated set covering problem as the following ILP

min
∑
j∈J

Xj

s.t.
∑
j∈J

Zi,j = hi,∀i ∈ I

Zi,j ≥ 0, ∀i ∈ I, j ∈ J

Zi,j ≤ hi · ai,j ·Xj,∀i ∈ I, j ∈ J∑
i∈I

Zi,j ≤ C, ∀j ∈ J

Xj ∈ {0, 1},∀j ∈ J.

Each of these terms has associated intuition:

• The objective
∑

j∈J Xj is stating that we wish to minimize the number of placed
facilities.

• The first constraint
∑

j∈J Zi,j = hi implies that a demand node i must have all of its
demand met.

• The constraint Zi,j ≥ 0 says that the amount of demand served must be non-negative,
and Zi,j ≤ hi · ai,j ·Xj says that demand node i can be serviced by a facility at j only
if there is a facility at j and if the distance between i and j is less than Dc. This is
because if Xj = 0 or ai,j = 0 then we must have that Zi,j = 0.

• The constraint
∑

i∈I Zi,j ≤ C says that a facility at j can service at most C amount
of demand.

• The constraint Xj ∈ {0, 1} forces these decision variables to be binary.
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