
IEOR 151 – Lecture 10

Nonlinear Programming

1 First-Order Optimality Conditions

We will consider the following optimization problem (P):

min f(x)

s.t. x ∈ Rn

gi(x) ≤ 0,∀i = 1, . . . ,m

hi(x) = 0,∀i = 1, . . . , k

where f(x), gi(x), hi(x) are continuously differentiable functions. We call the function f(x)
the objective, and we define the feasible set X as

X = {x ∈ Rn | gi(x) ≤ 0 ∀i = 1, . . . ,m ∧ hi(x) = 0 ∀i = 1, . . . , k}.

Note that this formulation also incorporates maximization problems such as max{f(x) : x ∈
X} through rewriting the problem as min{−f(x) : x ∈ X}.

Let B(x, r) = {y ∈ Rn : ‖x − y‖ ≤ r} be a ball centered at point x with radius r. A
point x∗ is a local minimizer for (P) if there exists ρ > 0 such that f(x∗) ≤ f(x) for all
x ∈ X ∩ B(x∗, ρ). A point x∗ is a global minimizer for (P) if f(x∗) ≤ f(x) for all x ∈ X .
Note that a global minimizer is also a local minimizer, but the opposite may not be true.

1.1 Unconstrained Optimization

When (P) does not have any constraints, we know from calculus (specifically Fermat’s the-
orem) that the global minimum must occur at points where either (i) the slope is zero
f ′(x) = 0, (ii) at x = −∞, or (iii) at x = ∞. More rigorously, the theorem states that if
f ′(x) 6= 0 for x ∈ R, then this x is not a local minimum. This result is useful because it gives
one possible approach to solve (P) in the case where there are no constraints: We can find
all points where the slope is zero, evaluate the function in the limits as x tends to x = −∞,
or x =∞, and then select the minimum amongst these points. One natural question to ask
is how can we extend this approach to the general case (P).
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1.2 Fritz John Conditions

If x∗ ∈ X is a local minimizer for (P), then there exists λi for i = 0, . . . ,m and µi for
i = 1, . . . , k such that the following equations, known as the Fritz John conditions, hold:

λ0∇f(x∗) +
∑m

i=1 λi∇gi(x∗) +
∑k

i=1 µi∇hi(x∗) = 0

λi ≥ 0,∀i = 0, . . . ,m

λigi(x
∗) = 0,∀i = 1, . . . ,m

(λ0, . . . , λm, µ1, . . . , µk) 6= 0.

We say that the j-th inequality constraint is active if gj(x
∗) = 0, and inactive if gj(x

∗) < 0.
Let I(x∗) = {j : gj(x

∗) < 0} be indices of the inactive constraints. The complimentary
slackness condition λigi(x

∗) = 0 means that λj = 0 must be zero for any inactive constraints
j ∈ I. Similarly, we denote the indices of the active constraints as J (x∗) = {1, . . . ,m}\I(x∗).

The Fritz John conditions are necessary (but not sufficient) for optimality. There are a few
important points to note.

1. It is possible for the Fritz John conditions to hold at some point x∗ that is not a
minimizer. For instance, if x∗ ∈ X is a point such that ∇hi(x∗) for all i = 1, . . . , k
are linearly dependent, then x∗ ∈ X satisfies the Fritz John conditions regardless of
whether it is a minimizer.

2. If λ0 = 0 then the minimizer x∗ is independent of the objective f(x). Additionally, it
must be that the ∇gj(x∗) for all j ∈ J (x∗) and ∇hi(x∗) for all i = 1, . . . , k must be
linearly dependent. (Recall that a finite set of vectors vi are linearly independent if the
only coefficients ai that solve

∑
i aivi = 0 are ai = 0 for all i.) This is not a positive

situation because it means that the optimization problem (P) may not be modeling
what we are interested in.

These points are important enough that they require further elaboration. Basically, if the
constraints are not well-behaved, then either a computational algorithm will have trouble
with finding a minimizer or the computed value will not depend upon the objective. What
would be more useful is a necessary condition for local optimality, but we will need to ensure
that the constraints are well-behaved.

1.3 Constraint Qualification

If we want optimality conditions like the Fritz John conditions to actually be indicative of
optimality, we require the constraints to be well-behaved. There are a number of mathemati-
cal conditions that ensure this. The simplest is arguably the Linear Independence Constraint
Qualification (LICQ). The LICQ holds at a point x if ∇gj(x) for all j ∈ J (x) and ∇hi(x)
for all i = 1, . . . , k are linearly independent.
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Under LICQ at x∗, we have that λ0 6= 0 in the Fritz John conditions for a local minimizer
x∗ ∈ X . This means that a local optimizer will depend upon the objective. Also, we cannot
have a situation in which an arbitrary point with LICQ x∗ satisfies the Fritz John conditions.

If the objective f(x) is convex, the inequality constraints gi(x) ≤ 0 are convex, and hi(x)
are affine functions, then Slater’s condition is another situation that implies the constraints
are well-behaved. Slater’s condition is that there exists a point x such that gi(x) < 0 for all
i = 1, . . . ,m and hi(x) = 0 for all i = 1, . . . , k. The intuition is that the feasible set X is
convex and has an interior.

1.4 Karush-Kuhn-Tucker Conditions

If LICQ holds at a point x∗ ∈ X , then the Karush-Kuhn-Tucker (KKT) conditions are
necessary for local optimality of x∗. The KKT conditions are the Fritz John conditions with
λ0 = 1 and with the positivity constraints (λ0, . . . , λm, µ1, . . . , µk) 6= 0 removed. Note that
satisfaction of the KKT conditions at a point x∗ ∈ X is also necessary for global optimality
of the point.

2 Example

Consider the following optimization problem

min x

s.t. x ∈ Rn

− x3 ≤ 0.

If x∗ ∈ {x ∈ R : −x3 ≤ 0} is the global minimizer of this optimization problem, then the
Fritz John conditions are that there exists λ0, λ1 such that

λ0 − 3λ1x
∗2 = 0

λ0, λ1 ≥ 0

− λ1x∗3 = 0

(λ0, λ1) 6= 0.

We can ask the reverse question, which is: What are the values of (λ0, λ1, x) for which the
Fritz John conditions hold? To answer this, we begin with the complimentary slackness
condition: −λ1x3 = 0. This means that either (a) λ1 = 0 and x:− x3 ≤ 0, or (b) λ1 > 0 and
x = 0. For case (a), the stationarity condition: λ0−3λ1x

2 = 0 implies that λ0 = 0; however,
this violates (λ0, λ1) 6= 0 and hence cannot be a solution. For case (b), the stationarity
condition: λ0 − 3λ1x

2 = 0 implies that λ0 = 0. Summarizing, the only set of solutions are

λ0 = 0

λ1 : λ1 > 0

x = 0.
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Because λ0 = 0 is the only possible value that satisfies the Fritz-John conditions, this means
that the global minimizer does not satisfy the KKT conditions. The reason is that constraint
qualifications fail: The gradient of the constraint −x3 is 0 at x = 0. In this example, we can
fix this issue by rewriting our constraints to ensure that LICQ holds. Specifically, we can
reformulate the optimization as

min x

s.t. x ∈ Rn

− x ≤ 0.

The KKT conditions are that the global minimum x∗ satisfies

1− λ1 = 0

λ1 ≥ 0

− λ1x∗ = 0

Also, all possible combinations of (λ1, x) for which the KKT conditions hold can be computed.
From the stationarity condition: 1− λ1 = 0, we have that λ1 = 1. Combining this with the
complimentary slackness condition: −λ1x = 0 gives that x = 0. This is the only possible
solution of the KKT conditions, and so the local minimizer must also be the global minimizer.
Summarizing, the global minimizer is x∗ = 0.
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