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1 Little’s Law

Suppose that we define the following variables
* L — average number of customers in system;
* \ —average arrival rate;
* W — average time in the system.

Then a useful relationship for queues is Liztle’s Law, which states that
L= \W.

To see why this relationship is useful, consider the M/M/1 queue from last lecture. There we
showed that the average number of customers in the system is given by

L=p/(1—p), forp=2A/p,

where ) is the average arrival rate and p is the average service rate. Using Little’s Law, we have that
the average time in the system for a customer in an M/M/1 queue is given by
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1.1 Variants oF LitTLE’s Law

'There are other versions of Little’s Law. Suppose that we define the following additional variables
* L, — average number of customers waiting to be served,;
* L, — average number of customers being served;
* W, — average time in the queue waiting to be served,;

* W, — average service time.



Then, we also have

L, = AW,
L, = AW..

Also, note that because the average time in the system is the average time spent waiting to be served
and the average serving time, we have that

W =W, + W,

Again returning to the example of the M/M/1 queue from last lecture, we have that
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2 M/M/s Queue with s Lines

Now, we turn our attention to a Markovian queue with s servers, average arrival rate ), and average
service rate for each queue of . First, we examine the situation in which there is a single line
for each server. This is the situation at, for instance, Safeway. In our model, we will assume that
each customer randomly chooses a line. Then, this is simply s distinct M/M/1 queues with average
arrival rate \/s and average service rate of y, for each queue. Using the results for M/M/1 queues

we have that
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3  M/M/s Queue with One Line

Now, we turn our attention to a Markovian queue with s servers, average arrival rate ), and average
service rate for each queue of pi. Here, we examine the situation in which there is a single line. This
is the situation at, for instance, Fry’s Electronics or the baggage check-in line for an airline at the
airport. Some math gives that
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where
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is the probability that all servers are occupied. An approximation is that
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It is interesting to compare an M/M/s queue with one line to an M/M/s queue with s lines. The

time spent in an M/M/s queue with s lines is longer than the time spent in an M/M/s queue with
one line. The intuition is that having just one line allows for greater utilization of all s servers.

4 M/M/oco Queue

Some systems are modeled using an infinite number of servers. In this model, the service rate is
state-dependent and is given by np where n is the number of customers in line, and p is the service
rate for a single customer. Some calculations give that L = \/pand W = 1/p.

5 More Information and References

'The material in these notes follows that of the course textbook “Service Systems” by Mark Daskin
and of the Wikipedia article on “Poison process”.
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