IEORI5|

Lab 8: Review of Linear Programming and Introduction to Excel Solver

Long He
Dept of Industrial Engineering \& Operations Research Fall 2013

Linear Programming

- Primal and dual in canonical forms

$$
\begin{array}{llll}
\text { Max } \sum_{j \in J} c_{j} X_{j} & & \text { Min } \sum_{i \in I} b_{i} W_{i} & \\
\text { s.t. } & \sum_{j \in J} a_{i j} X_{j} \leq b_{i} & \forall i \in I & \text { s.t. } \\
& \sum_{i \in I} a_{i j} W_{i} \geq c_{j} & \forall j \in J \\
& X_{j} \geq 0 & \forall j \in J & \\
\mathrm{~W}_{i} \geq 0 & \forall i \in I
\end{array}
$$

Example in Textbook 2.5.2

- Consider a problem of deciding how to allocate a budget for municipal services between police and fire protection. In the simple model, each police patrol costs $\$ 200,000$ per year and each fire truck costs $\$ 1,000,000$ per year including the cost of the fire station. The city has only $\$ 5,350,000$ to allocate to the combined police and fire budgets. In addition, contracts with the unions representing the two city services stipulate that there must be at leastl. 5 times as many police patrol units as there are fire trucks and that there cannot be more than 7.5 times as many police units as there are fire units.
- The goal is to maximize the number of lives saved over a year. We expect 0.2 lives saved per year per police patrol unit and 0.65 lives saved per fire truck.

2.5.2 Formulation

Max $0.2 \cdot$ Police $+0.65 \cdot$ Fire s.t. $200 \cdot$ Police $+1000 \cdot$ Fire ≤ 5350
$-1.0 \cdot$ Police $+1.5 \cdot$ Fire ≤ 0
1.0 Police $-7.5 \cdot$ Fire ≤ 0

Police ≥ 0
Fire ≥ 0

Solving the Problem in Excel

- Build model in Excel

	A	B	C	D	E	F
1						
2		Inputs				
3						
4		CosttPolice	2	in \$ 100,000		
5		Costrifire	10	in $\$ 100,000$		
6		Budget	53.5	in $\$ 100,000$		
7		Min PolicelFire	1.5			
8		Max PolicelFire	7.5			
9						
10		Lives ${ }^{\text {P/Police }}$	0.2			
11		LivelFire	0.65			
12						
13		Decision Vari	ables			
14						
15			Police	Fire		
16						
17						
18		Objectiv				
19						
20		Objective	0.2	0.65		
21						
22		Maximize Lives Saved	0			
23						
24		Constrain				
25						
26		Police >=Min PolicelFire"Fire				
27						
28			0	>=	0	
29						
30		Police <=Max PolicelFire"Fire				
31						
32			0	<=	0	
33						
34		Budget				
35						
36			0	<	53.5	
37						

Solving the Problem in Excel
 - Name the cells
 - Formulas -> Create from Selection

- Edit the cells with formulas (using names)

Solving the Problem in Excel

- Setup solver (File->Options->Add-Ins>Solver Add-In)

Solving the Problem in Excel

- Setup solver

Solving the Problem in Excel

Solver found a solution. All Constraints and optimality conditions are satisfied.
© Keep Solver Solution
ORestore Original ValuesReturn to Solver Parameters Dialog

	A	B	C	D	E	
1						
2		Inputs				
3						
4		Cost'Police	2	in $\$ 100,000$		
5		CostiFire	10	in \$100,000		
6		Budget	53.5	in $\$ 100,000$		
7		Min Policelfire	1.5			
8		Max PolicelFire	7.5			
9						
10		Lives ${ }^{\text {Prolice }}$	0.2			
11		LivedFire	0.65			
12						
13		Decision Var	riables			
14						
15			Police	Fire		
16			16.05	2.14		
17						
18		Objecti				
19						
20		Objective	0.2	0.65		
21						
22		Maximize Lives Saved	4.601			
23						
24		Constrai	nts			
25						
26		Police > = Min PolicelFire ${ }^{\text {FFire }}$				
27						
28			16.05	>=	3.21	
29						
30		Police < = Max PolicelFire ${ }^{\text {Fire }}$				
31						
32			16.05	<	16.05	
33						
34		Budget				
35						
36			53.5	<	53.5	
37						

Solving the Problem in Excel

- Answer report

	A B	C	D	E	F	G
1	Microsoft Excel 12.0 Answer Report Worksheet: [Lab1.xIsx]Sheet1 Report Created: 9/1/2011 4:23:15 PM Target Cell (Max)					
2						
3						
4						
5						
6			Target Cell (Max)			
7	Cell	Name	Original Value	Final Value		
8	\$C\$22	Maximize Lives Saved Police	4.601	4.601		
9						
10						
11	1 Adjustable Cells					
12	Cell	Name	Original Value	Final Value		
13	\$C\$16	Police	16.05	16.05		
14	\$D\$16	Fire	2.14	2.14		
15						
16						
17	7 Constraints					
18	Cell	Name	Cell Value	Formula	Status	Slack
19	\$C\$28	Police	16.05	\$C\$28>=\$E\$28	Not Binding	12.84
20	\$C\$32	Police	16.05	\$C\$32<=\$E\$32	Binding	0
21	\$C\$36	Police	53.5	\$C\$36<=\$E\$36	Binding	0

Solving the Problem in Excel

- Sensitivity report

4	A B	C	D	E	F	G	H
1	Microsoft Excel 12.0 Sensitivity Report						
2	Worksheet: [Lab1.xIsx]Sheet1						
3	Report Created: 9/1/2011 4:22:59 PM						
4							
5							
6	Adjustable Cells						
7			Final	Reduced	Objective	Allowable	Allowable
8	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
9	\$C\$16	Police	16.05	0	0.2	$1 \mathrm{E}+30$	0.07
10	\$D\$16		2.14	0	0.65	0.35	2.15
11							
12	Constraints						
13			Final	Shadow	Constraint	Allowable	Allowable
14	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
15	\$C\$28	Police	16.05	0	0	12.84	$1 \mathrm{E}+30$
16	\$C\$32	Police	16.05	0.028	0	26.75	24.69230769
17	\$C\$36	Police	53.5	0.086	53.5	$1 \mathrm{E}+30$	53.5

2.5.2 Mixed Integer Program

Max 0.2 \cdot Police $+0.65 \cdot$ Fire
s.t. $200 \cdot$ Police $+1000 \cdot$ Fire ≤ 5350
$-1.0 \cdot$ Police $+1.5 \cdot$ Fire ≤ 0
1.0•Police - 7.5• Fire ≤ 0

Police integer
Fire integer
Police ≥ 0
Fire ≥ 0

Add Integer Constraints

