

0

Lab 7: Location Models

Long He Dept of Industrial Engineering & Operations Research Fall 2013

Admin info

- Midterm
 - Return on Monday class
 - Grade will be curved
- Bring laptop in next lab
 - Excel with solver installed

Distance

I-D: locate over a line

• Distance between two points x_i and x_j $d_{ij} = |x_i - x_j|$

- 2-D: locate over a plane
 - Euclidian distance $\sqrt{(x_i x_j)^2 + (y_i y_j)^2}$
 - Manhattan(Metropolitan) distance $|x_i x_j| + |y_i y_j|$
- 3-D
 - Great-circle distance: locate over a sphere (the earth) *radius* × *central angle*

Location problems

Network problems

• Plane problems

Median problem

- Objective: minimize total demand weighted travel distance
 - P-median
 - Others

Cross-median location problem

- Know demand locations (set M)and sizes.
- Find a service location (s) to minimize total demand weighted metropolitan distance traveled.
- Formulation

$$\sum_{i \in M} w_i |x_i - x_s| + \sum_{j \in M} w_j |y_j - y_s|$$

• Solve I-median problems in each dimension respectively.

Cross-median location problem

- Solve I-median problem
 - Step I: calculate total demand $W = \sum_i w_i$
 - Step 2: find the location such that (i) total demand on left $\leq \frac{1}{2}W$; and (ii) total demand on right $\leq \frac{1}{2}W$

Cross-median location problem

- Example
 - Demand locations (in coordinates): A(6,2), B(8,6), C(5,9), D(3,4).
 - Demand sizes: A(2000), B(1000), C(3000), D(2000).
 - Recommend service location (x_s, y_s) .
- Consider I-median problems in each dimension.

Hoteling problem

- Two firms A and B locate their hotels along a street in order to maximize demand covered.
- Assumptions
 - Demands are uniformly distributed.
 - Customers go to the closest hotel.
- Results
 - Equilibrium: both A and B open their hotels at the midpoint of the street. (what if not?)