IEORI5|

Lab 7: Location Models

Long He
Dept of Industrial Engineering \& Operations Research Fall 2013

Admin info

- Midterm
- Return on Monday class
- Grade will be curved
- Bring laptop in next lab
- Excel with solver installed

Distance

- I-D: locate over a line
- Distance between two points x_{i} and x_{j}

$$
d_{i j}=\left|x_{i}-x_{j}\right|
$$

- 2-D: locate over a plane
- Euclidian distance $\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}$
- Manhattan(Metropolitan) distance $\left|x_{i}-x_{j}\right|+\left|y_{i}-y_{j}\right|$
- 3-D
- Great-circle distance: locate over a sphere (the earth) radius \times central angle

Location problems

- Network problems
- Plane problems

Median problem

- Objective: minimize total demand weighted travel distance
- P-median
- Others

Cross-median location problem

- Know demand locations (set M) and sizes.
- Find a service location (s) to minimize total demand weighted metropolitan distance traveled.
- Formulation

$$
\sum_{i \in M} w_{i}\left|x_{i}-x_{s}\right|+\sum_{j \in M} w_{j}\left|y_{j}-y_{s}\right|
$$

- Solve I-median problems in each dimension respectively.

Cross-median location problem

- Solve I-median problem
- Step I: calculate total demand $W=\sum_{i} w_{i}$
- Step 2: find the location such that (i) total demand on left $\leq \frac{1}{2} W$; and (ii) total demand on right $\leq \frac{1}{2} W$

Cross-median location problem

- Example
- Demand locations (in coordinates): $\mathrm{A}(6,2)$, $B(8,6), C(5,9), D(3,4)$.
- Demand sizes: $\mathrm{A}(2000), \mathrm{B}(\mathrm{I} 000), \mathrm{C}(3000)$, D(2000).
- Recommend service location $\left(x_{s}, y_{s}\right)$.
- Consider I-median problems in each dimension.

Hoteling problem

- Two firms A and B locate their hotels along a street in order to maximize demand covered.
- Assumptions
- Demands are uniformly distributed.
- Customers go to the closest hotel.
- Results
- Equilibrium: both A and B open their hotels at the midpoint of the street. (what if not?)

