IEORI5|

Lab IO: Solving Simple TSP in Excel

Long He
Dept of Industrial Engineering \& Operations Research Fall 2013

Traveling Salesman Problem (TSP)

- Objective
- To find a minimum-length route that begins at some node-it could be any node in the network-and ends at the same node, visiting each node exactly once.

Heuristic Algorithms

- Minimum spanning tree based heuristic
- Nearest insertion heuristic
- Christofides' heuristic

A Minimum Spanning Tree Based Heuristic

- Step 1: Construct a minimum spanning tree
- Step 2: Let the root be an arbitrary vertex
- Step 3: Traverse all the vertices by depth-first search, record the sequence of vertices (both visited and unvisited)
- Step 4: Use shortcut strategy to generate a feasible tour

Worst-case Analysis

Let $L^{M S T}$ denotes the length of the tour generated by above strategy, then we have

$$
L^{M S T} \leq 2 W^{*} \leq 2 L^{*}
$$

Where W^{*} denotes the length of the minimum spanning tree.
And this bound is tight.

Nearest Insertion Heuristic

- Step 1: Choose an arbitrary node v and let the cycle C consist of only v.
- Step 2: Find a node outside C closest to a node in C; call it k.
- Step 3: Find an edge $\{i, j\}$ in C such that $d_{i k}+d_{k j} d_{i j}$ is minimal.
- Step 4: Construct a new cycle C by replacing $\{i, j\}$ with $\{i, k\}$ and $\{k, j\}$.
- Step 5: If the current cycle C contains all the vertices, stop. Otherwise, go to Step 2.

Worst Case Analysis

The length of current tour C is no more than the twice of the dark line length.

The dark line is nothing, but a minimum spanning tree (exactly same as Prim's Algorithm), thus

$$
L^{M S T} \leq 2 W^{*} \leq 2 L^{*}
$$

Christofides' Heuristic

1. Find the minimum spanning tree
2. Find the odd-degree nodes of the MST
3. Find the optimal matching of the odddegree nodes and add links of the matching to the MST
4. Draw an Euler tour on the resulting graph

Step 3

Figure 10.22. MST with optimal matching of odd degree (shaded) nodes

Step 4

Figure 10.23. Christofides' heuristic result after removing multiple visits to nodes E, H, and I

Optimal Matching -- Example

Figure 10.3. Example undirected network

Example

Figure 10.4. Simple network of Figure 10.3 with odd-degree nodes highlighted

Example

Figure 10.5. Optimal matching of the odd-degree nodes of Figure 10.4

Finding Optimal Matching

TABLE 10.1. Pairs of odd-degree nodes than can be paired from the network of Figure 10.4

Pair Nodes	Repeat Links	Total Distance
B, C	BD, DC	25
\checkmark B, E	BE	12
B, G	BD, DG	23
C, E	CD, DE	28
\checkmark C, G	CD, DG	22
E, G	EG	13

TSP Formulation

- Inputs and sets
- $\mathbf{N}=$ the set of nodes in the network
$\circ \mathrm{d}_{\mathrm{jk}}=$ the distance between nodes j and k (to avoid self-loops, set $d_{i j}=\infty$ for all j in N)
- Decision variables
${ }^{\circ} \mathrm{X}_{\mathrm{jk}}=I$ if the tour goes directly from j to k ; 0 otherwise

TSP Formulation

$\operatorname{Min} \sum_{j \in N} \sum_{k \in N} d_{j k} X_{j k}$
s.t. $\sum_{k \in N} X_{j k}=1 \quad \forall j \in N$
$\sum_{j \in N} X_{j k}=1 \quad \forall k \in N$
$\sum_{j \in S} \sum_{k \in S} X_{j k} \leq|S|-1 \quad \forall S \subset N, 2 \leq|S| \leq|N|-1$

$$
X_{j k}=\{0,1\} \quad \forall j \in N ; k \in N
$$

Example

Example

- Solving without "subtour elimination constraints"

Total distance $=1005$

Example

- Luckily, we don't need $2^{11}-1 \mid-2=2035$ "subtour elimination constraints" for this example.
- Let's eliminate the existing 6 subtours. Namely:A-F-A, B-D-E-B, B-E-D-B, C-G-C, H-K-H, I-J-I.

Example

- Solution

Total distance $=1020$

Exercise

- Solve the example in Excel Solver.
- Show me the result and take attendance

Hint: add subtour elimination constraints below
$A-F-A \quad X_{A F}+X_{F A} \leq 1$
$B-D-E-B \quad X_{B D}+X_{D E}+X_{E B} \leq 2$
$B-E-D-B \quad X_{B E}+X_{E D}+X_{D B} \leq 2$
$C-G-C \quad X_{C G}+X_{G C} \leq 1$
$H-K-H \quad X_{\text {НК }}+X_{\text {КН }} \leq 1$
$I-J-I \quad X_{I J}+X_{J I} \leq 1$

