IEOR 151 - Номmework 6 Due Monday, October 21, 2013 in class

1. Suppose a fast food restaurant would like to purchase veggie burger patties from a food distributor. The restaurant's utility for the patties is given by $S(q)=1000 \ln (1+q)$. The fixed costs for the food distributor are 8,000 , and if the distributor is inefficient (efficient) then its marginal costs are $0.10(0.08)$. Assume that the restaurant believes that there is a 80% chance that the food distributor is efficient.
(a) What are the first-best production levels? (2 points)

Note that equating marginal utility to marginal costs for the inefficient distributor gives

$$
\begin{aligned}
q_{1}^{I}: S^{\prime}\left(q_{1}^{I}\right)=\theta^{I} & \Rightarrow q_{1}^{I}: \frac{1000}{1+q_{1}^{I}}=0.10 \\
& \Rightarrow q_{1}^{I}=9999
\end{aligned}
$$

Similarly, equating marginal utility to marginal costs for the efficient distributor gives

$$
\begin{aligned}
q_{1}^{E}: S^{\prime}\left(q_{1}^{E}\right)=\theta^{E} & \Rightarrow q_{1}^{E}: \frac{1000}{1+q_{1}^{E}}=0.08 \\
& \Rightarrow q_{1}^{E}=12499
\end{aligned}
$$

(b) What are the contracts to implement the first-best production levels? (2 points)

These contracts allow for zero information rent, meaning that the inefficient distributor should be offered the contract

$$
\left(q_{1}^{I}=9999, t_{1}^{I}=\theta^{I} q_{1}^{I}+F=0.10 \cdot 9999+8000=8999.90\right),
$$

and the efficient distributor should be offered the contract

$$
\left(q_{1}^{E}=12499, t_{1}^{E}=\theta^{E} q_{1}^{E}+F=0.08 \cdot 12499+8000=8999.92\right)
$$

(c) How much profit would the efficient distributor make if the restaurant offers a menu of contracts $\left\{\left(q_{1}^{I}, t_{1}^{I}\right),\left(q_{1}^{E}, t_{1}^{E}\right)\right\}$? (1 point)

The profit would be

$$
t_{1}^{I}-\theta^{E} q_{1}^{I}-F=8999.90-0.08 \cdot 9999-8000=199.98
$$

(d) What are the second-best production levels? (2 points)

The production level for the efficient agent remains unchanged $q_{2}^{E}=q_{1}^{E}=12499$, and the production level for the inefficient agent decreases to

$$
\begin{aligned}
q_{2}^{I}: S^{\prime}\left(q_{2}^{I}\right)=\theta^{I}+\frac{\nu}{1-\nu}\left(\theta^{I}-\theta^{E}\right) & \Rightarrow q_{2}^{I}: \frac{1000}{1+x}=0.10+\frac{0.8}{1-0.8}(0.10-0.08) \\
& \Rightarrow q_{2}^{I}=5554
\end{aligned}
$$

(e) What is the menu of contracts for the second-best production levels? (2 points)

The transfer for the efficient agent is
$t_{2}^{E}=\theta^{E} q_{2}^{E}+\left(\theta^{I}-\theta^{E}\right) q_{2}^{I}+F=0.08 \cdot 12499+(0.10-0.08) \cdot 5554+8000=9111.00$, and the transfer for the inefficient agent is

$$
t_{2}^{I}=\theta^{I} q_{2}^{I}+F=0.10 \cdot 5554+8000=8555.40
$$

Summarizing, the menu of contracts are $\left\{\left(q_{2}^{E}=12499, t_{2}^{E}=9111.00\right),\left(q_{2}^{I}=5554, t_{2}^{I}=\right.\right.$ 8555.40) \}.
(f) What is the information rent of the efficient distributor for the menu of contracts for the second-best production levels? Is this higher or lower than the profit gained for the menu of contracts for the first-best production levels? (2 points)

The information rent for the efficient distributor is

$$
U^{E}=t^{E}-\theta^{E} q^{E}-F=9111.00-0.08 \cdot 12499-8000=111.08
$$

This is lower than the profit gained for the menu of contracts for the first-best production levels 199.98.

