IEOR 151 - Номеwork 3 Due Wednesday, September 25, 2013 in class

1. Suppose 5 different hypothesis tests have been conducted, with p-values of: Test 1 ($p=0.07$), Test $2(p=0.001)$, Test $3(p=0.015)$, Test $4(p=0.005)$, Test 5 ($p=0.05$).
(a) Using the Bonferroni correction, which tests should be accepted or rejected when the family-wise error rate is $\alpha=0.05$. (2 points)

Since there are five tests, the Bonferroni correction states that a hypothesis should be rejected if $p<\alpha / 5=0.01$. Thus, Tests 2 and 4 should be rejected and Tests 1,3 , and 5 should be accepted.
(b) Using the Holm-Bonferroni method, which tests should be accepted or rejected when the family-wise error rate is $\alpha=0.05$. (3 points)

We begin by arranging the p-values in increasing order: $0.001,0.005,0.015,0.05,0.07$. We need to determine the smallest k such that the k-th p-value in the arranged list is greater than $Q_{k}=\alpha /(5+1-k)$. For $k=1, \ldots, 5$, the rounded values of Q_{k} are 0.01 , $0.0125,0.017,0.025$, and 0.05 . In this case, $k=4$ is that smallest k. As a result, we reject hypothesis corresponding to the first three p-values in the ordered list and accept the remaining. Thus, Tests 2,3 , and 4 should be rejected and Tests 1 and 5 should be accepted.
2. Suppose that three groups whose measurements are expected to be Gaussian are compared, and an F-test gives $p=0.01$. The p-values for the pairwise comparisons are given by $p_{12}=0.010$, $p_{13}=0.007$, and $p_{23}=0.030$.
(a) Using the Bonferroni correction, which tests should be accepted or rejected when the family-wise error rate is $\alpha=0.05$. (3 points)

Suppose that we perform the F-test at the significance level of $\alpha / 2$, then we reject the null hypothesis corresponding to the F-test. Now using the Bonferroni correction, we should reject any pairwise tests whose p-values are below $(\alpha / 2) / 3=0.008$. Thus, we should reject p_{13} and accept p_{12} and p_{23}.
(b) Using the Holm-Bonferroni method, which tests should be accepted or rejected when the family-wise error rate is $\alpha=0.05$. (3 points)

Suppose that we perform the F-test at the significance level of $\alpha / 2$, then we reject the null hypothesis corresponding to the F-test. Next, we arrange the pairwise p-values in increasing order: $0.007,0.010$, and 0.030 . We need to determine the smallest k such that the k-th p-value in the arranged list is greater than $Q_{k}=(\alpha / 2) /(3+1-k)$. For $k=1, \ldots, 3$, the rounded values of Q_{k} are $0.008,0.0125$, and 0.025 . In this case, $k=3$ is that smallest k. As a result, we reject hypothesis corresponding to the first two p-values in the ordered list and accept the remaining. Thus, p_{13} and p_{12} should be rejected and p_{23} should be accepted.

