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ABSTRACT 
This  paper  surveys  sane  of  the unifying ap- 

proaches  used to  derive formulae for  updating  the 
inverse  Hessian  approximations i n  quasi-Newton al- 
gorithms  and  presents  a new approach of  this  kind 
based on geometric  considerations. The paper  dis- 
cusses  the  intuitive  motivations  for  these ap- 
proaches and their   potential   in  providing  expla- 
nations  for observed  behavior  of such algorithms. 

1. INTRODUCTION 

The quasi-Newton algorithms, hown also  as 
Variable  Metric Methods, are  considered  to  be  the 
most sophisicated  algorithms  for  solving  the un- 
constrained  minimization problem 

min f ( x )  where x E I!? and f E C2 . 
These  methods, which  assume the   ava i l ab i l i t y   o f the  
gradient   g(x)   for  any given  x,  are  based on 
the  recursion 

In  this  recursion, an  analog to   t he  one used i n  
the Newton Raphson  method, ak, i s  a posi t ive 
s tep  s ize  parameter se lec ted   to   sa t i s fy   cer ta in  
descent  conditions,  while % i s  an  n x nmatrix 
approximating the  inverse  Hessian [ $f (x)]-l-. 
The bas ic   p r inc ip le   in   these   dgor i thms  i s   to  ob- 
tain  sane  of  the advantages  of Newton's  method 
while  using  only f i rs t   order   information  about the 
function. Thus, the approximations & are   in-  
ferred frun t h e  gradients a t  previous  iterations 
and updated  as new gradients become available. 
The updating i s  done such tha t  Dk+lqk = & 
where  qk = gk+l  -.gk and 3 = xk+l -  xk' This 
condition, whlch 1s of ten   re fer red   to  as the 
"quasi-Newton condition," i s  motivated  by  the  fact 
tha t  i f  the  function was quadratic,  then 
C$f(X)I-'qk = pk' 

The f i r s t  algorithm  of  this  type was invented 
by Davidon [l] and fur ther  developed and simpli- 
f i e d  by  Fletcher and  Powell [2] .   In   this  method, 
r e fe r r ed   t o  as the DFP algorithm, & i s  updated 
by the  rank two formula 

and q i s   s e l e c t e d  such a s   t o  minimize 
f (xk  - %k). When applied t o  a posi t ive  def i -  
nite  quadratic  function  with  Hessian H, the  di- 
rections pk generated by the  abwe  algorithm 

are  H conjugate  implying  n-step convergence. 
Furthermore, the  nth  approximation Dn equals H. 
Since  the  pioneering works by Davidon and  by 
Fletcher and  Powell, the   f ie ld   of  quasi-Newton 
algorithms  has  been  a  very  active  research  area 
and the  subject  of a vast  number of publications. 
Many of these  contributions  proposed  alternative 
updating  formulae, and scme of them ([3], [ 41, 
151, [6] ) introduced  unifying approaches tha t   l ed  
to  general   classes of such formulae. These ap- 
proaches of ten  offer   interest ing  interpretat ions 
t o  sane  of the  well known formulae that   are  spe- 
cial  cases  of  the more general  classes, and might 
prove  valuable i n  explaining scme of  the  puzzling 
behavior  of  these  formulae. 

It i s   t h e  purpose  of this  paper  to  survey 
sane  of  the  existing  approaches mentioned above 
and introduce a new approach tha t   l eads   to  sane 
commonly used  updating  formulae.  This  deriva- 
t ion   o f fe rs   geane t r ic   in te rpre ta t ions   to   the   ro le  
of  the  various terms in   t hese  formulae. 

2. APPROACHES BASED ON GENERATING  CONJUGATE 
DIRECTIONS 

The most cannon approaches  used to  derive up- 
dating  formulae  for  variable  metric algor i thms 
are  based on viewing these formulae as means of 
generating  conjugate  direction. Thus, the  objec- 
t i v e   i n   t h e s e  approaches i s  to  construct  general  
classes  of such fomulae  that  will produce, i n  a 
quadratic  case,  conjugate  directions of  search. 
In  constructing such classes,  it i s  always assumed 
that  the  objective  function i s  a posi t ive  def ini te  
quadratic  of  the form 

f ( x )  = $ X'HX + bx + c ( 3 )  

and tha t   t he   s t ep   s i ze   ak   i n  (1) i s  "perfect," 
i . e . ,  it minimizes f (xk  - %k). 

Using the  notation  introduced  earlier,  the 
directions of  search  are  defined by pk = -a,&gk. 
Suppose the  vectors  p form a se t   o f  
mutually  conjugate  vecG-i* t 3 ~ ~  respect   to  H I ,  
and the  points xl,. . . ,xn  are  obtained  by  apply- 
ing (1) with  a  perfect   ak  to (3).  Then 
pIHpj = 0 f o r  i # j and gi+lpi = 0 f o r  a l l  
i. Consequently, i -1 
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From the  conjugacy  condition, we have 

p l ~ p .  = - a . g ! ~ . ~ ~ p .  = o fo r  i f j . ( 5  1 1 J  1 1 1  J 

Satisfying ( 4 )  and ( 5 )  i s  a necessary and su f f i -  
c ient   condi t ion  for   the  p 's   to  be  conjugated. 
Thus, the  desired  updating  formulae have t o  gener- 
ate  matrices & t h a t   s a t i s f y  

giDkHpj = 0 and g;P = 3 
where p .  = 

Broyden [3] was the 
classes  of  formulae,  but 
condition 4% = pk t o  
sidered  updatings  of  the 

J 

0 fo r  j < k (6) 
- a.D.g 

J J ~ '  

first to   invest igate  such 
he added the quasi-Newton 
h i s  requirement. He con- 
form 

Dkil = Dk + pkwi - D q Z '  k k k  

~ ~ ~ ~ f ~ ~ 6 ) ~ d  :;e quasi-Newton condition.  This 
are  vectors chosen  such a s   t o  

l e d   t o  a one parameter  family  of updating  formulae. 

A more general  class  that  contains Broyden's 
family was developed  by Huang [4]. To s a t i s f y  con- 
di t ion ( 6 ) ,  Huang required  that 

D Hp = D q.  = p p fo r  j 5 k-1 (8)  
k j k~ j j  

and considered  updates  of  the  general form, 

Dk+l = Dk ' akpkpi ' bkDk%qiDi + p k q i D i  
+ dkDkq@k (9) 

where pj ,  ak,  bk, Ck, dk are  arbitrary  scalars.  
hposing condition (8) on ( 9 ) and requir ing  that  
Dk be symmetric leads   to  a two parameter  family 
of  formulae tha t  can  be wri t ten  in   the form: 

Dk+l = Dk - DkqkqiDk/qiDkqk + (4;rkvL ' Pkpkp;/Piqk 

(10 1 
where Vk = Pk/P& - Dkqk/qpkqk -le 
4 are  arbi t rary  scalars .  If pk = 1, 
k, (10) reduces t o  Broyden's class mentioned 
above, and i f   i n   a d d i t i o n  'pk = 0, it becomes the 
DFP formula. One should  point  out  that though (10)  
does not   sa t i s fy   the  quasi-Newton condition  unless 
pk = 1, it can be  modified t o   s a t i s f y  t h a t  condi- 
t i on  by multiplying  the  right hand side by  l/pk 
(assuming 4 f 0) .  Such a modification, which 
c l ea r ly  would not  affect  the  directions of search, 
may be u s e M  when these  formulae  are  used  with a 
predetermined 5 = 1 for  all k. (See Oren [7] ). 

Many of  the  updating  formulae  proposed i n   t h e  
past  were specid  cases   of  (10) o r  I t s  modifica- 
t i o n  mentioned  above. Most of  these  formulae  use 

Some of  the more recent  contributions  take advan- 
tage  of   the  f reedm  in  choosing 'pk t o  impose ad- 
ditional  requirements such as posi t ive  def ini te-  

and low condition  nmber of & (see 
Spedicato 81 and Shanno [g]) .  It was shown,  how- 
ever, by Dixon [ lo]  t h a t   i f  pk i s  fixed, and ak 
perfect  then  the  points  generated by Huang's algo- 
rithm are  independent  of 'pk even f o r  a nonquad- 
ratic  function. 

Pk = f o r  all k, since  this  guarantees %=H. 

ness Of 9 

Algorithms  of Huang's c lass   that  use  variable 
pk have been considered  only  recently and seem t o  
perform consistently  better  than  the ones using 
fixed  values  of pka  One algorithm of t h i s  type 
was given by Eggs [U], who adjusts Fk to  ac- 
count for  nonquadratic  terms in   the  object ive func- 
t ion.  A d i f fe ren t   c r i te r ion  was proposed by Oren 
and Luenberger  [12], who suggested to   s e l ec t  pk 
such as t o  ensure  onoto ' c  decrease in   t he  condi- 
t i o n  number of H1?2D&%. This approach l e d   t o  
the  Self  Scaling  Variable  Metric  Algorithm  given 
by Oren, 1131, m l .  

In   sp i t e  of i t s  generality, ( 9 )  i s  not  the 
only  possible form of updating  formulae tha t  will 
satisfy  condition (8 ) .  This f ac t  was noticed by 
Adachi [ 5  1, who introduced  three more general 
families of  formulae tha t   s a t i s fy  ( 8 )  with p. - 1. 
Though the   res t r ic t ion  on  pj i s  not  essential  tc 
Adachi's development, it was introduced by the 
author t o  ensure 91 = H. Adachi has shown tha t  
all of the known updating  formulae  (not  including 
the ones with  variable pk) may be derived  as 
special  cases  of  his  families.  In a l a t e r  paper, 
Adachi [15]  also  extended Dixon's [ l o ]  resul t  and 
derived  conditions  under which algorithms  using 
different  members of his  three  general  classes of 
formulae  generate  the same sequence  of points   in  
a nonquadratic  case. 

J -  

Though the  approaches  discussed above are 
very  elegant and unify much of  the  theoretical  
work done i n  t h i s  area,  they have l imited  value  in  
terms  of  explaining  observed  behavior  of  the  vari- 
ous updating  formulae and suggesting ways t o  im- 
pmve them. Theories t ha t  view variable  metric 
algorithms  as  special  kinds of conjugate  direction 
methods w i l l  never be able t o  explain  the  observed 
fact   that   variable  metric methods are  superior  to 
regular  conjugate  direction  algorithms such as 
Fletcher and Reeves [16]. Such observations  sug- 
gest  that  perhaps  the  conjugacy  property and the 
n-step convergence are  not  the most important 
properties of variable  metric methods. This view 
i s  concurred by Fletcher 's   [ l7]  and Oren's [7] 
resul ts  which indicate  that  using  predetermined 
step  sizes  ak  (rather  than  perfect  ones) does 
not  radically  increase  the number of i t e r a t i o n s   t o  
convergence and actual ly  reduce  the to ta l   nmber  
of  gradient and function  evaluations. Such modi- 
f ications  destroy  the conjugacy of the  search di- 
rections even i n  a quadratic  case and with  onlyone 
exception  (the  "rank one update")  relinquish  the 
n-step convergence feature.  It i s   c l ea r ,   t he re -  
fore,  that  theories  hinging on such properties  are 
useless  in  analyzing  the  effect  of these  modifica- 
tions. 

3. GREENSTADT' S VARIATIONAL APPROACH 

In  contrast  with  the  previous approach which 
i s  based on properties of the  search  directions, 
Greenstadt's [6] approach i s  based on properties 
of  the  updating  formulae. ?he objective  here i s  
to find a synrmetric correction E to  the  inverse 
Hessian  approximation & such &at 

and Dk+l = Dk ' Ek (U) 

Dk+lqk = 'k (12 1 
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( q  and p defined  as  before).  Greenstadt f e l t  
tha t   in   o rder   to   avoid   ins tab i l i ty  one should t r y  
to   r e s t r i c t   t he   co r rec t ion  by  minimizing  sane norm 
of Ek. For  convenience  reasons he chose the norm 
N ( E )  = Tr(WFWE' ), where W i s  an arbitrary  posi-  
t ive  def ini te   matr ix .  ~y minimizing N(Ek) sub- 
j e c t   t o  (12) and the requirement t h a t  Ek be sym- 
metric,  Greenstadt  arrived  at  the  general  updating 
formula 

Special  cases of t h i s  formula may be  obtained 
by particular  choices of Mk. It has been shown, 
for  instance, by Goldfarb [le] t h a t   i f  we denote 
by E$ the  correction term i n  (13) corresponding 
to Mk = Dk and  by E; the  correction correspond- 
ing t o  Mk = %+l, then  the  class of  updating 
formulae &+l = % + BE?+ (l-9)EE (where 9 is 
an arb i t ra ry   sca la r )  i s  equivalent  to Broyden's 
family. One should  note, however, that  Goldfarb's 
choice  of Mk may violate   the assumption t h a t  Wk 
is posi t ive  def ini te .  

Except for  special   cases,  (13)  will not  gen- 
erate  conjugate  search  direction even with  perfect 
s tep  s ize .  On the  other hand, this  theory does  not 
depend on whether the  s tep  s ize   is   perfect   or   not ,  
which jus t i f ies   us ing  members of (13) without  line 
search. 

4. A GMlMETRIC APPROACH 

The approach presented in   this   sect ion  adopts  
the view tha t   the  most important  feature  in  quasi- 
Newton algorithms i s   t h e  approximation  of the  in-  
verse  Hessian. One should rea l ize   tha t   the   fac t  
t h a t  an  algorithm  converges i n  n s teps   for  a quad- 
ra t ic   case  and  produces the  exact  inverse  Hessian 
a t  the  n-th  step,does  not imply tha t  it produces 
good approximations to  the  inverse  Hessian at  each 
i te ra t ion .  On the  contrary, it has  been shown by 
Luenberger [ 191 and by Oren and  Luenberger [ 121 
t h a t  even i n  a quadratic problem the DFP algorithm 
may produce bad approximations to   the  inverse  Hes- 
sian  before n steps  are completed. I n  such  cases 
small perturbations  in  the  objective  function  or 
the  s tep  s ize  which destroy  the conjugacy property 
cause the DFP method t o  perform worse than  steep- 
est   descent.  

&or  inverse  Hessian  approximations  are  usu- 
a l l y  caused  by a poor initial approximation o r  a 
f a s t  changing  Hessian ( i n  a nonquadratic  case). 
Since  the  corrections  in most variable  metric meth- 
ods are   res t r ic ted  to   the  direct ion of theupdating 
vector pk, it may take, even i n  a quadratic  case,n 
i t e r a t ions   t o  ccmpensate f o r  a poor initial e s t i -  
mate.  Furthermore, i f  the Hessian i s  changing, the 
qual i ty  of the approximation  might deter iorate   fas t -  
er  than it i s  improved so tha t  even a goodin i t ia l  
estimate may deter iorate  and never  recover.  &or 
inverse  Hessian  approximations  arisingin this 
manner wi l l  usually  generate  poor  search  directions 

(p), since  the  gradient gk i s  almost  orthog- 
o to   the  la tes t   updat ing  vectors .  

The Self-sealing  Variable  Metric Algorithms 
described i n  [12] and  [13] may be in t e rp re t ed   i n  
this  context as methods for  correcting Dk through 
scaling  with  respect  to an  n-1  dimensional  sub- 
space  not  including %, in   addi t ion   to   the  regu- 
l a r  update in   the   d i rec t ion  pk. 

The following  approach, which was motivated 
by the above considerations, i s  based on an algo- 
rithm proposed  by  Luenberger [l9] that  uses  par- 
tial information  about  the  Hessian by taking New- 
ton   s teps   res t r ic ted   to   the  subspace Over whichthe 
Hessian i s  known followed  by steepest  descent  steps 
which are   or thogonal   to   that  subspace. 

Let M be an  m-dimensional  subspace spanned 
by the column vectors  of  the n x m matrix B. 
Then minimizing the  quadratic  approximation  of a 
f'unction f ( x )  over the   l inear   var ie ty  M +Xk 
yields a point z such tha t  

Zk = X k - B ( B ' V  k 2  f(xk)B) -1 B ' ~ f ( x ~ )  . (14)  

Equation (14)  defines a Newton i t e r a t ion   r e s t r i c t ed  
t o   t h e  subspace M, and  by analogy  with  the form- 
u la   for  Newton's  method, B( B'$f (xk)B)-b '  can 
be interpreted as the  inverse of $f(xk)  re- 
s t r i c t e d   t o  M. 

Luenberger [19] a l s o  pointed  out  that   in a 
quadratic  case,  the  difference  in  gradients  along 
the  steepest   descent  step  in  his combined algo- 
rithm may be  used to  infer  the  inverse  Hessian 
over a la rger  subspace.  Implementing th i s   i dea   i n  
a recursive way yields a quasi-Newton a l g o r i t h .  
This  can  be done by updating  the  restricted  in- 
verse  Hessian  such  as t o  expand the subspace M by 
one dimension a t  every  iteration;  then  the  (n+l)th 
i t e r a t i o n  will be a full Newton s tep  that   y ie lds  
the minimum. The p a r t i a l  Newton s t eps   i n  such a 
procedure w i l l  always yield  the minimm over m a n i -  
folds  that  contain  the  preceding  updating  vectors. 
Hence, finding  the minimm along  these  vectors, 
i .e. ,   the  steepest   directions,  i s  no longer  neces- 
sary.  In  fact,  the  difference of gradients q 
along any vector p $ M will   provide enough in-  
formation  for  updating  the  inverse  Hessian  re- 
s t r i c t e d   t o  M, and obtain  the  inverse  Hessian 
r e s t r i c t ed   t o  M+p. Such an  updating  formula i s  
provided in   the  next  theorem. 

Theorem 1. Le t   f (x )  be a posi t ive  def ini te  
quadratic  function  with  Hessian H and % = 
%(B&mk)-lBk be the  inverse  of H r e s t r i c t ed   t o  
the subspace Mk where the columns of % form a 
bas is   for  M . Let = xk+l-  Xk and qk = 
Vf(Xk+l) - *?X,) where Xk+l i s  such t h a t  
pk f Mk +Xk. Then 
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h.oof: For s implici ty  we anit the  subscripts and 
denote  the  enti t ies corresponding to   k+ l   by  ( &). 
Define A = (B 'HB) - l  and b = B'Hp. Then D = 
BAB', and since  q = Hp,  we have b = B'q.  Using 
these  definit ions,  one  can express A-1 i n   t h e  form 

B'KB B'Hp A-1  b A A - 1  = [B,PI'HIB,PI=[prm p ~ m ]  =[br p ~ q ]  (16) 

Applying the  standard  formulae  for  inverting  apar- 
t i t ioned  matr ix   to  (16) r e s u l t s   i n  

+ p(p'q-b'Ab)-'(p'-b'AB' 1 (17) 
Equation (15) can  be obta ined   d i rec t ly   f rm (17) by 
using  the Householder  rank one modification  fomu- 
l a  and few manipulations. 

The updating  formula (15) i s  the  well known 
rank-one  formula f i r s t  proposed  by Broyden [31. 
However, the above derivation and the way it i s  
used here were or ig ina l ly  propose$  by Oren and 
Luenberger and f i r s t   p resented   in  [19]. 

The ideas  described so fa r   a re   in tegra ted   in  
the  following  crude  algorithm. 

Algorithm I=. Sta r t  with Do = [ 03, Mo = e and 
x. E En. 

Step 1: Choose  pk 6 Q 

Step 4: Set dk = - %+lgk and obtain 

Step 5: Add one to   k  and go t o  Step 1. 

In  the above algorithm pk i s  an exploratory 
s t ep   t ha t   i s   t aken   a t  each i t e r a t ion  so tha t   the  
updated D wil l   predict   the   best   next  move i n   t h e  
enlarged  subspace. The figure below i l l u s t r a t e s  
one i t e r a t ion  of  Aliorithm 1. 

For  the  quadratic  case and for  k 5 n, 
i s  the minimum over   the  l inear   var ie ty  Mk+l + Xk.  
This  follows from the  fact   that   xk+l  i s  deter- 
mined by a Newton s tep   res t r ic ted   to  Mk+l.  Thus 
the   g rad ien t   a t  Xk+l i s  orthogonal t o  Mk+l. 
This provides us a  natural  way of choosing p-&.ly 

part icular ,  one  can simply  take = gk. 
Such a  choice w i l l  be pk E Mk + gk, pk $ M g .  In 

It C a n  be  proved t h a t   i f  fi E Mk f Qk, pk f Mk 
fo r  all k, then Algorithm 1 i s  a  conjugate  gradi- 
ent  algorithm. This proof which i s   d t e d  here due 
t o  space l imitat ion i s  based on the assumption 
tha t  Xk i s  the minimum over Mk + Xk for  each k. 
One should  note, however, t ha t  even i f   t h i s   i s  not 
true  but  the  function i s  quadratic  the  updating 
fomula   wi l l  s t i l l  yield  the  best  possible  approxi- 
mation to  the  inverse Hessian a t  every  step and 
Dn = H-1. This implies  that  the  (n+l)-th  iteratjDn 
consists  of  a ~LIU Newton s tep and xn+l i s   t h e  minimum. 

I found out  recently  that an algorithm based 
on  most of the  ideas  presented above has  been  inde- 
pendently  developed  by Maman and Mayne [ 201. This 
algorithm, which i s  referred  to  as "Pseudo Newton- 
Raphson  Method, " i s   i n   p r i n c i p l e   s i m i l a r   t o  Algo- 
rithm l, except for   the way D i s  updated. In- 
stead  of  updating D direct ly   as  done i n  Step 3 
of Algorithm 1, Maman and Mayne update  the  matrix 
P = B'$f (x)B and then  calculate  the new matrix 
6 = BP-lB. The inversion of P i s  simplified by 
choosing the column vectors of B such as to make 
P diagonal.  This i s  accomplished  by storing the 
matrices B and R = $f(x)B. These matrices  are 
updated a t  each step  according  to: = [ B,v]  and 
R^= [R,w], where v = p-B(B'R)-lBlq and w = 
q-R(B 'R) ' lB 'q .  Then, in  a  quadratic  case  with 
Hessian. H, = 0 a n d  

One of   the  diff icul t ies   that  would a r i s e   i f  
we applied  Algorithm 1 to   a  nonquadratic  function 
follows from the   fac t   tha t  M becomes the   en t i re  
space after  n  steps  while  the minimum i s  not 
necessarily  reached.  Since it i s  not  possible to 
select   a  vector  p $ M, the  algorithm  cannot be 
continued. One way t o  proceed i n  such a  case i s  
t o   r e s t a r t   t he  algorithm. However, t h i s   i s  an ur 
desirable  approach,  since it discards  valuable  in- 
formation. An el ternat ive approach described be- 
low is   to   discard  only  information  for  which re- 
placement i s  available. To be  more s p e c i f i c ,   l e t  
us consider  a  quadratic  function  with  Hessian H 
and l e t  D be a fW.l rank  approximation t o  H. 

If D was the  correct  inverse  Hessian we 
would have  had Dq = p  for  any p. We assume, 
however, t h a t   t h i s  i s  not  the  case and we choose  an 
updating  vector  for w'nich the above equality i s  not 
satisfied.   Clearly,  i f  such a   p   exis ts   then  a t  
l eas t   in   the   d i rec t ion  p, D i s  the wrong approx- 
imation  for  the  inverse  Hessian. We wish to  cor- 
rect  that  discrepancy by replacing  the  infomation 
contained  in D with  respect  to  direction  pwhile 
retaining  the  rest   of  the  infomation correspond- 
ing to an (n-1)-dimensional  subspace  not  contain- 
ing  p. We assume tha t  over t ha t  subspace, D ap- 
proximates the  inverse  Hessian  correctly. 

The replacement i s  done i n  two s teps .   Firs t  
we obtain  a  restnlction of D to the n-1 dimen- 
s ional  subspace M wWch does  not  contain  p. 
This r e s t r i c t ion   w i l l  be denoted by D which i s_  
assumed t o  be the  @verse  Hessian  restricted to M. 
Second we uEdate D by using Eq. (15) with  p and 
q. Since D is. assumed to b,e t?ee_iqerse_  Hessian 
r e s t r i c t e d   t o  M, we have D = B(B'HB)-IB'  where 
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i s  a matrix consisting  of  n-1 columns tha t  span 
M. The only  condition on fi is tha t  it does not 
contain  p;  therefore M can  be  chosen i n  an inf in-  
i t e  number of ways. A convenient  characterization 
of M i n  terms  of  p i s  obtained by using a pos- 
i t i v e   d e f i n i t e  symnetric  matrix G such tha t  
M = {Y (Y'GP = 01. ~ Clearly  every p  and G will 
define a  unique M since y'Gp = 0 defines a 
unique  hyperplane  through the  origin,  which i s  
orthogonal to   the   vec tor  Gp. Furthermore, assum- 
ing p f e, p w i l l  not be included i n  M since 
p'Gp f 0. In view of  the above, for  any  given  p 
we can  choose implici t ly  fd tha t  does not  contain 
p  by selecting a posi t ive  def ini te  symmetric ma- 
trix G. As  def ined  ear l ier  B" i s  a matrewhose 
columns span E, and since Gp E M I  then EGp = 8. 
This  implies DGp = 9. Another consideration  in 
deriving fi i s  the  reversibility  of  the  process. 
We expect fi t o  be  such tha t  updating it, using 
(15) with p  and i where = D'lp, r e s u l t s   i n  
D. The fogowing theorem provides a  formula fo r  
deriving D given D, p, G, t ha t   s a t i s f i e s   t he  
conditions  stated  abwe. 

Theorem 2. Let  the  matrix 5 be defined by 

where p i s  a  given  vector and D -and G a re  
SyURnetriC n X n matrices. Then X p  = g and 

- Proof: The condition k p  = e follows  directly 
from l18). Equation ( 1.9) i s  proved  by using (18) 
and  q = D'lp to subst i tute  Ei and i n  i t s  
r igh t  hand side, and simplifying it. 

After D i s  obtained by Eq. (le), we can use 
the new information encoded i n  p  and  q  and  up- 
date Q using (15) to obtain  the  next approxima- 

Equations (18) and (20) form a two stage  fam- 
i l y  of  formulae fo r  updating  a f u l l  rank inverse 
Hessian  approximation  using  the  difference  of  gra- 
dients  q  along  any  given  vector  p.  Particular 
selections  of G wil l   y ie ld   special   cases   of   this  
family. O f  spec ia l   in te res t  i s  t o  choose G such 
:hat Gp = q. In   that   case,  (18) reduces t o  
D = D - Dqq'D/q'Dq and consequently 

Equation (U) i s  the  familiar DFP formula  mentioned 
in   the  introduct ion  to   this   paper .   In   the above 
derivation, however, we did  not impose any r e s t r i c -  
t i on  on the  updating  vector  p, which suggests 
t ha t  ( U t  w i l l  improve ( i n  some sense)  the  approxi- 
mation to  the  inverse  Hessian  with any  updating 
vector p.  This  conclusion i s  consistent  with 
Fletcher 's  [17] observation, which i s  based  oneig- 
ewalue analysis, and j u s t i f i e s   t o  scxne extent  the 
use of (U) i n  algoritlrms  with  predetennined  step 
size. 

formula. The first two terms  represent  the  re- 
tained  information on ~ - 1  corresponding to a 
(n-l)-dimensional  subspace tha t  i s  H orthogonal 
t o  p,  while  the last term  represents  the  updated 
infomation  in   the  direct ion  of  p.  "Self-Scaling" 
can thus be interpreted as proper  weighting  of  the 
retained  information  relative  to  the new. 

The view t h a t  (U) i s  a recursive formula 
which approximates the  inverse  Hessian  indepen- 
dently  of  the  updating  vectors  selectioqenablesus 
to obtain Broyden's [ 31 class  of  formulae  by  a 
simple  extension  of (U). One can  argue tha t  i f  D 
i s  an approximation t o  H-1, then so i s  (HDH)-1. 
Thus, pre- and post-multiplying (U) by H, sub- 
s t i t u t ing  q = Hp and then  inverting it (by two ap- 
plications  of  Householder's rank one modification), 
yields  another  updating formula (known as   the com- 
plementary DFP or   the BFS formula).  Broyden's 
family i s  j u s t  a  weighted sum of  the DFP and BFS 
formulae, where the weight i s  the free parameter. 

5. CONCLUSION 

In  this paper we presented a c r i t i c a l  survey 
of  unifying  approaches to variable  metric -0- 
rithms and introduced a new approach  based on geo- 
metric  considerations.Each one of  these  approaches 
leads  to  general   classes of  formulae fo r  updating 
the  inverse  Hessian  approximation which contain  as 
special  cases  the commonly used  formulae. Each of 
these  approaches  differs  in  the assumption  and c r i -  
t e r i a  used in   the  der ivat ion and  hence suggests 
different   interrelat ions  to   the  resul t ing  updates .  
The insights  obtained  in  deriving such updates from 
different  approaches may prove  valuable i n  under- 
standing  the  observed  characteristics  of  various 
updating  formulae  such  as  stability,  sensitivity 
to  l ine-search accuracy, etc.   Particularly pmmi- 
s ing   in   th i s   respec t   a re  approaches that  focus on 
the  generation  of good inverse  Hessian approxima- 
t ions  rather  than on the  search  directions. Ap- 
proaches tha t  focus on the conjugacy  of the  search 
directions  are based on too   res t r ic t ive  assump- 
t ions which a re   unrea l i s t ic  and suppress  the capa- 
b i l i t y  to d i f fe ren t ia te  between the  various up- 
dates. 
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