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Abstract 

When  a  bidder's  strategy  in  one  auction  will 
affect  his  competitor's  behavior  in  subsequent 
auctions,  bidding  in  a  sequence of auctions  can 
be modeled  fruitfully  as  a  multistage  control 
process  in  which  the  control  is  the  bidder's 
strategy  while  the  state  characterizes  the  compe- 
titors'  behavior.  This  paper  presents  such  a 
model  in  which  the  state  transition  represents 
the  competitors'  reaction  to  the  bidder's  strate- 
gy.  Dynamic  programming  is  used  to  derive  the 
infinite  horizon  optimal  bidding  strategy. It  is 
shown  that  in  steady  state  this  optimal  strategy 
generalizes  a  previous  result  for  equilibrium 
bidding  strategy  in  "one-shot"  auctions. 

1 .  Introduction 

Much of the  theory of competitive  bidding 
and  all of the  early  developments  in  that  theory 
dealt  with  "one-shot"  situations.  By  one  shot 
situations,  we  mean  bidding  situations  in  which 
it  is  appropriate  for  the  bidder  to  attempt  to 
maximize  his  expected  profit  from  the  present 
auction or simultaneous  group of auctions.  Re- 
cently,  a  number of models for optimum  bidding  in 
sequential  auctions  have  been  developed  [1,2,3,6, 
7,8,13,14].  All of these  deal  with  the  internal 
effects  within  the  bidding  firm o f  winning or 
losing  auctions.  With  the  exception of a  little 
known  and  specialized  paper of Bauerjee  and  Ghosh 
[ Z ] ,  they  all  share  the  assumption  that  the  com- 
petition  will  not  react  in  later  auctions  to  what 
the  bidder  has  done  in  earlier  auctions.*  At 
times  this  must  be  a  tenuous  assumption  in  a 
field  that  is  filled  with  literature  suggesting 
how  bidders  should  use  information  about  the 
past  behavior  by  competitors  to  determine  their 
bids  in  present  auctions.  Therefore,  we  have 
built  a  model of bidding  in  sequential  auctions 
in  which  a  bidder's  competitors  are  assumed  to 
react  to  his  previous  bids. 

ding  process  as  a  dynamic  multiplayer  noncoopera- 
tive  game.  This,  however,  seems  difficult.  Our 
approach  is  less  ambitious.  We  assume  that  bid- 
ders  develop  a  behavioral  model of how  their 

* In  addition,  there  are  two  works  that  deal  with 
the  problem of two  bidders  bidding  sequentially 
for  two  items.  [S,ll] 

One  possible  approach  is  to  model  the  bid- 

competitors  will  react.  This  leads  us  to  model 
the  sequential  bidding  problem  as  a  multistage 
control  process  in  which  the  control  is  the  bid- 
der's strategy  while  the  state  characterizes  the 
collective  behavior of the  competitors.  In  this 
model  the  state  transition  represents  the  com- 
petitors'  reactions  to  the  bidder's  policy.  Dyna- 
mic  programming  is  used  to  derive  an  equation 
for  the  optimal  infinite  horizon  bidding  strategy. 
When  this  equation  is  solved  for a generalization 
of a  previous  model of "one-shot"  auctions [9], 
the  formula  for  the  optimal  "one-shot"  policy  is 
modified  by  the  inclusion of a  term  that  depends 
upon  the  magnitude of competitive  reaction,  the 
time  between  auctions,  and  the  discount  rate. 

2. A Dynamic  Model of Bidding  in 
Sequential  Auctions 

Consider  a  bidder  who  faces  an  infinite  se- 
quence of sealed  bid  auctions.  In  each  auction, 
his expected  profit  from  that  auction  depends 
upon  the  bidding  policy of the  rest of the  indus- 
try  and  upon  his  own  bidding  policy.  He  would 
like  to  choose his  own  policy  to  maximize  his 
expected  profit  from  the  immediate  auction.  How- 
ever,  he  must  keep  in  mind  that  his  actions  in  the 
present  auction  will  be  observed  by  his  competi- 
tors  and  will  influence  their  behavior  in  future 
auctions.  Therefore,  it  is  in  his  interest  to 
choose  a  bidding  policy  that  will  maximize  his 
expected  present  value of profits  in  the  present 
auction  and  all  future  auctions. It is  this  pro- 
cess  that  we  propose  to  model. 

Let p(k) be an  dimensional  vector  where 
n  is  the total  number of bidders  and Pi(k) , the 
ith component of t ( k )  , is  a  scalar  representing 
the  bidding  policy of the  ith  bidder  in  the  kth 
auction. The expected  reward of  the  ith  bidder  in 
the  kth  auction,  denoted  by Ei(k) , is  assumed 
to  be  a  fixed  function of p(k) . Furthermore, 
this  reward  function  is  assumed  to  have  the  form 

Ei(k) = Ei(Qi(k1 , Pi(k)l 3 (1) 
where Qi(k) is  a  scalar  function of all  the 
components of F'(k) excluding Pi(k) such  that 
if Pj(k) = P  for  all  j#i  then Qi(k) = P . The 
reward  function Ei(-) summarizes  all of the  in- 
ternal  effects on  the  bidder of winning or losing 
a  particular  auction,  along  with  his  likelihood of 
winning. 

Under  these  assumptions  the  ith  bidder  may 
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view Qi(k) as  a  variable  representing  the  ag- 
gregate  bldding  policy of the  rest of the  trade. 
Furthermore,  the  effect of his  present  bidding 
policy on the  future  behavior of the  rest of the 
trade  may  be  encoded  in  terms of the  change  in 
Qi(k) . In particular,  we  shall  assume  that  at 
any  auction  k+l 

Qi(k+l) = fi(Qi(k) 3 Pi(k)) (2) 

This  implies  that  the  aggregate  policy of the 
trade,  as  viewed  by  the  ith  bidder,  in  the  (k+ljth 
auction  depends on this  aggregate  olicy  and  the 
policy of the  ith  bidder in the kt K auction.  Equa- 
tion ( 2 )  may  be  viewed  as  a  behavioral  assumption 
on how  the  ith  bidder  views  the  dynamics of the 
trade.  However, it may  also  be  regarded  as  an 
approximation  to  the  update of Qi(k) that  could 
result  from  a  game  theoretic  approach. 

to  view  the  process of bidding  in  sequential 
auction  as  a  multistage  control  process  (see [4]) 
where Pi (k) is  the  control,  Qi (k) is  a  state 
variable  and  Equation (2) is  the  state  transition 
function.  Bidder its objective  is  to  determine 
a  control  sequence  that  will  maximize  his  present 
value of the  rewards  over  an  infinite  horizon. 
Let  Di be  the  discount  factor of the  ith  bid- 
der,  i.e., D. = exp(-r.t) where  t  is  the  time 
between  auct$ons  and +. is  the  continuous  dis- 
count  rate of the  ith bllcjder. Then  bidder i's 

The  above  assumptions  enable  the  ith  bidder 

problem  is  to  maximize C Dl:  Ei(k) where Ei(k) 
is  as  in (1). k=o 

"- 

This  problem  can  be  solved  using  dynamic 
programming.  Let 

(3) 
Subject  to: Qi(k+l) = fi(Qi(k),Pi(k)) , 

Qi(j) = Qi 
One  can  easily  show  that  for Di 1 , 

Vi(Qi,j) = Vi(Qi,j+l) = Vi(QiI . ( 4 )  

Thus  the  argument  j  can  be  suppressed,  and  by 
the  "principle of optimality"  we  have 

For notational  convenience  we  shall  omit 
temporarily  the  subscripts  i . Let P(Q) be 
the  value of P  that  maximizes  the  right  hand 
side of (5) for  a  given  value of Q , then 

Assuming E(Q,P)  and  ̂f(Q,P) are  differentiable 
with  respect  to  P , P(Q) is  a  stationary  point 
satisfying  the  necessary  condition: {w+ D. __ dV  dC ( E )  I *-} af(Q ap PI = o  

C=f(Q,P)  P=P(Q) ( 7 )  
for  any  given  Q . 

entiating  with  respect t o  5 yields 
Substituting 5 for  Q  in ( 6 )  and  differ- 

The second  part of (8) is  zero  by ( 7 ) .  Solving 
for D[dV(c)/d[] at <=f(Q,P(Q)) and  substitu- 
ting  it  into  the  remainder of (8) gives 

Equation  (10)  is 2 necessary  condition  for  the 
optimal  strategy  P.(Q.) . According  to  this 
strategy,  bidder  iis 'optimal policy  in  any 
auction  will  be 

PT(k) = Pi(Qi(k)) (11) 

It should  be  noted  that ii(Qi(k)) is  bidder its 
optimal  policy  given  his  assumption  that  the 
trade's  behavior  is  represented  by Q.(k) and  Eq. 
( 2 ) .  This  is  true  independently of whether  bid- 
der i t s  previous  policies  were  optimal  and of 
whether  the  trade  has  followed  the  assumed  reac- 
tion  function  in  the  past. 

3 .  Optimal  Equilibrium  Policy 
for  Identical  Bidders 

To  obtain  more  specific  results  we  shall 
consider  now  the  special  case of identical bid- 
ders  i.e.,  when fi( .) , Ei ( * )  and D. are  the 
same  for  all  i . It  is conceivable  that  there 
exist  in  this  case  an  optimal  equilibrium  policy 
P*  such  that, if all the  bidders  use  this  policy 
it  is  optimal  for  each of them  to  keep  using  it. 
This  implies Pi(P*) = P*  for  all  i . Further- 
more,  for  the  reaction  function fi(-) to  be  con- 
sistent  dynamically  with  such  behavlor  it  has  to 
satisfy 

fi(P*,P*) = P* . (12)  

Substituting  these  two  conditions  in  Eq. (10) and 
eliminating  the  subscript  i , results  in  the 
following  equation  for  P* . 

549 

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on March 19,2010 at 18:51:13 EDT from IEEE Xplore.  Restrictions apply. 



For  the  policy  P* to be  a  meaningful 
equilibrium  policy,  it  should be a  stable  equi- 
librium  in  the  sense  that  small  deviations  from 
this  policy  will  create  incentives  that  will 
drive  the  trade  back  to  equilibrium.  This  sta- 
bility  condition  imposes  an  additional  restric- 
tion  on  the  reaction  function.  In  particular, 
f(.) has  to  be  such  that  for  sufficiently  small 
AP 
If(P*+AP , C(P*+AP)) - P*l 5 BIAPlfor  some 6 < I  

For A P M  Eq. (14) becomes I 

(14) 

In  view of  the  above  discussion  it  is  clearly 
desirable  from  a  game  theory  point of view to 
choose  a  reaction  function f(*) satisfying  Eq. 
(12), ( 1 3 ) ,  and (15). Using  such  a  response 
function  leads  to  an  equilibrium  policy  which  is 
consistent  with  the  game  theoretic  approach  in 
which  all  bidders  are  assumed  to  optimize  their 
policy  while  considering  that  their  competitors 
do  the same. 

4. Reaction  Functions 

In  this  section  we  shall  discuss  two 
specific  forms  for  the  reaction  function  f (.) 
in  our  model,  and  their  implications. 

consider  initially  is 
The  functional  form  we  have  chosen  to 

f(Q.  ,P.) = Qi - a(- - pi)(Pi - Qi) . (16) 1 
1 1  n 

In  this  equation,  Q.  and P. are  the  respective 
policies of the  trahe  and  bihder  i , n  is  the 
total  number of bidders, a is  a  scalar  para- 
meter  and  pi  is  the  winning  probability of 
bidder  i . The  probability  p.  is  in  general 
a  function of the  number of bidaers  n  and  the 
policies  Qi  and Pi . 

Qi 

Qi(l -7 a(n-I) 7 
/ /=pi 

Figure 1: f(Q.  ,P.) = Qi - a(; - pi)  (Pi - Qi) 1 
1 1  

The  reaction  function  defined  by  (16) 
corresponds  to  an  assumption  that  the  trade  reac- 
tion  to a  deviation  from  trade  policy  by  bidder 

i  will  be  proportional  to  the  product of the 
extent of the  deviation  and  the  extent  by  which 
bidder  i  deviates  from  his  "fair"  share,  l/n , 
of the  market. The constant a is, of course, 
the  constant of proportionality.  We  assume  it  to 
be  positive.  With  this  definition,  in  the  case 
of identical  bidders,  an  equilibrium  policy  im- 
plies Qi = P. = P*  and  pi = l/n . Thus (16) 
satisfies conhtion (12). 

Figure 1 illustrates f(Qi , P.)  as a 
function of  Pi for  a given  Q. . Assuming  that 
P. = 0 implies  p = 1 , it  bekins  with  the  value 
ftQi,O) = Q. (I-a(n-l)/n). Then it rises to a  max- 
imum of  Qil at Pi = Qi and  then  declines. 

This  choice of reaction  function  has  sever- 
al  important  consequences.  One  can  easily  verify 
that  for  this  function, 

i 

and 

Thus, if we  substitute (17)  and (18) in (13) and 
assume D < 1  we  obtain  the  equilibrium  condition: 

This  is  the  same  condition  as  for  the  "one-shot'' 
situation.  Substituting  (17)  and (18) in  the 
right  hand  side o f  (15) indicates,  however,  that 
P* satisfying (19) is  an  unstable  equilibrium. 
This  instability  has  disconcerting  implications 
with  respect  to  the  dynamics o f  the  trade  policy. 
If  the  initial  trade  policy, Qi is  above  the 
static  equilibrium  value, P* , that  satisfies 
(19), then  there  is no problem.  However,  if  Qi 
is  below P* , then  the  equilibrium  can  never  be 
reached.  Any  deviation  by  an  optimizing  bidder 
from  the  trade  policy  will  only  lead  the  members 
of the  trade  to  lower  their  bids  and  thus  move 
them  further  from  the  "equilibrium".  In  this 
range,  the  model  is  analagous  to  the  "kinked 
demand  curve"  model of oligopoly  theory  in  which 
competitors  match  price  decreases  but  not  price 
increases. 

The  second  reaction  function  that  we 
consider  is 

f(Q.,P.) = Q. + ap. (P. 
1 1  1 1 - Qi) (20) 

where  Qi  Pi , CI and p. , are as in  Eq.  (16). 
This  deflnltlon  corresponas  to  an  assumption  that 
the  trade  reaction  to  a  deviation  from  trade  pol- 
icy  is  proportional  to  the  deviation  and  to  the 
likelihood of the  deviating  bidder  winning  the 
auction,  and  it  clearly  satisfies (12). This 
reaction  function  considered  as  a  function of  Pi 
for given  Q.  is  illustrated  in  Figure  2.  Again 
assuming  P. = 0 implies  p. = 1 , it  starts 
with  f(Qi,b) = (l-a)Qi . 1% then  rises  (falls 
for a < 0 )  with  a  slope  that  starts  at a and 
decreases  to  a/n  by  the  time  Pi  has  been  in- 
creased to Qi . At  this  point  f(Qi,Qi) = Qi . 
It  continues to increase  (decrease if a < 0) 

1 
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until  it  reaches  an  extremum  and  then  approaches 
C!. asymptotically  for  large  Pi . In order  to 
i.hsure  that f(.) is  positive  for  every  positive 
Pi  we  must  restrict a to  be  less  than  unity. 
Furthermore,  since  in  the  identical  bidders  case, 
negative  values of a can  be  shown  to  result  in 
an  unstable  equilibrium,  we  shall  restrict c1 to 
be  positive. 

/ f"Pi 

Qi 

Figure  2: f(Qi , Pi) = Q. + ap.  (P. - Qi) 1 1 1  

Again  in  the  case of identical  bidders,  an 
equilibrium  policy  implies  Qi = Pi = P* and 
pi = l/n . Thus for the  reaction  function (20) 

Substituting  (21)  and  (22)  in  (13) yields  the 
equilibrium  condition 

(23) 
In  this  case,  the  sequential  auction  equilibrium 
satisfying  (23)  is  generally  different from  the 
one  shot  equilibrium  mentioned  earlier. Two  ex- 
ceptional  situations  in  which (23) reduces to 
(19) and hence  the  two  equilibriums  are  the  same 
occur  when D=O or - =O . In  the  first  case 
the  bidders  disregardnfuture  payoffs  and  thus 
behave  as  in a  one  shot  situation.  In  the 
second  case  the  trade  is  insensitive  to  individ- 
ual  policies  either  because a=O or because  the 
number of  bidders,  n , is  large. Thus,  an  indi- 
vidual  bidder  should  not  worry  about  his  impact 
on  the  trade  and  can  behave  as  in a one  shot 
auction. 

Substituting (21)  and  (22)  in  (15) yields 
the  stability  condition  for  the  equilibrium  pol- 
icy  satisfying (23). This  condition  is 

a 

(24) 

Since 6(P*) = P* , Eq. (24)  implies  that P* is 
a  stable  policy if near P* the  optimal  policy 
of each  bidder  deviates  from  P*  less  than  his 
estimate of the  trade  policy. A rigorous  proof 
that  this  condition  is  satisfied  involves  the 
specific  form of the  reward  function.  However, in 
general  one  can  expect  that  if  the  trade  bids  very 
aggressively,  bidder  i  cannot  make  money  in  this 
auction  and  thus  his  optimal  strategy  will  be  to 
lose  the  bid  by  bidding  very  unaggressively. On 
the  other  hand,  if  the  trade  bids  unaggressively, 
he should  do  his  best  to  win  the  bid  by  bidding 
more  aggressively  than  the  trade.  Assuming P(.) 
is a  continuous fu?ction,  the  above  implies  that 
as Q increases P(Q) crosses  the  forty  five 
degree  line  from  above,  and  thus  its  slope  at 
P(P*) = P*  is  less  than  unity;  satisfying  condi- 
tion (24). 

5. A  Particular  Model 

In  this  section  we  generalize  some of t he  
results  obtained  by  Rothkopf [9] for  a one  shot 
model  to  the  case of sequential  auctions.  The 
work  we refer  to  describes  a  model of a  competi- 
tive  auction  in  which  there  are n  bidders,  each 
with  the  same  cost,  c , of doing a  job. It  is 
assumed  that  each  bidder  independently  makes  an 
unbiased  estimate of his  cost  and  then  multiplies 
his  estimate  by a  factor  Pi  in  order  to  arrive 
at his  bid.  The  bidder's  independent  cost  esti- 
mates  are  each  assumed  to  come  from a two  para- 
meter  Weibull  distribution  with  spread  parameter 
m . Under  these  circumstances,  the  expected 
profit  from  this  auction  for  bidder  i  is  given 
by 

where 

and n 
Q. = [-- 2 (l/pT]]-l/m . 1 
1 (n-1) j=l (27) 

j+i 

The  quantity  pi  in E q .  (25)  is  the  probability 
that  bidder i wins  the  auction  while  the  term  in 
the  brackets  times  c  represents  his  expected 
profit if  he wins. 

described  above  reoccurs  at  fixed  time  intervals 
and  that  each  bidder  has  to  consider  the  effect 
of his  present  bid  on  his  future  payoffs.  In  par- 
ticular  we  shall  assume  as  before  that  bidder  i's 
objective is  to  maximize  his  present  value  of 
future  rewards  with  discount  factor  Di . Clearly 
the  reward  function  (25)  satisfies  condition (1). 
We  also  assume  the  reaction  function  given  by (20). 
Thus  the  identical  bidders  equilibrium  policy  can 
be  derived  from  (23)  and  (24).  This  result  in 

Suppose  now  that  the  one  shot  situation 

p *  = m(n-l)nl/m 
m(n-1)-1-F 

where F is  defined  as 

F = aD/(l-D) 
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For F=O, (28)  r e d u c e s   t o   t h e   o n e   s h o t   e q u i l i b -  
r ium  pol icy   ob ta ined   in   [9] .   This  i s  c o n s i s t e n t  
wi th   the   observa t ion  made i n   S e c t i o n   4 ,   t h a t   f o r  
D=O o r  a=O (23 )   r educes   t o   t he   one   sho t   equ i -  
l i b r i u m   c o n d i t i o n .  

u n t i l   t h e   e q u i l i b r i u m   d i s i n t e g r a t e s  at  
As F i s  i n c r e a s e d ,  P* i n c r e a s e s  

F = m(n-1)-1  (30) 

Therefore  we must restrict  a t o  

O. < [m(n-1)-l](l-D)/D . (31) 

A t  equi l ibr ium  the  expected  value  of   the  winning 
b i d  will be 

a n d   t h e   e x p e c t e d   p r o f i t   i n   e a c h   a u c t i o n   o f   e a c h  
o f   t h e  n b i d d e r s  will be 

E(P*,P*) = 
c P* n - l l m -  c c 1 + F  

n 
_ -  

n ' m(n-1)-1-F * (33) 

If the   compe t i t i on   beg ins   w i th   equ i l ib r ium s t r a t -  
e g i e s ,   t h e   p r e s e n t   v a l u e   o f  a b i d d e r ' s   p r o f i t s   i n  
t he   p re sen t   and  a l l  f u t u r e   a u c t i o n s  is given  by 

V(P*) = E(P*,P*)/(l-D) . (34) 

Obvious ly ,   the   b idders  are b e t t e r   o f f  a t  equi -  
l i b r i u m  i f  t h e   t r a d e  reacts s t r o n g l y   t o   p r i c e  
c u t t i n g   ( i . e . ,  i f  a i s  l a rge )   t han  i f  i t  does 
n o t .  The d e g r e e   o f   r e a c t i o n   t h a t  i s  l i k e l y   t o  
occur  will probably  depend on a number o f   i n s t i -  
t u t i o n a l   f a c t o r s   n o t   f u l l y   r e p r e s e n t e d   b y   t h e  
model.  These  would c e r t a i n l y   i n c l u d e   t h e   s p e e d  
and   cer ta in ty   wi th   which   compet i tors   can   d i scern  
a pol icy   change   and   the   ex ten t   to   which   the  com- 
p e t i t o r s   i n   o n e   a u c t i o n  are l i k e l y   t o   b e   t h e  same 
as the   compet i tors   in   the   succeeding   auc t ions .  

6 .   Discussion  and  Conclusions 

This paper  accomplishes two t h i n g s .  
First o f  a l l  we have   der ived   an   equat ion   for   an  
o p t i m a l   i n f i n i t e   h o r i z o n   b i d d i n g   s t r a t e g y .   T h i s  
equat ion  i s  q u i t e   g e n e r a l .  I t  can  be  used f o r  
a wide  var ie ty   of   assumptions  about  how competi- 
t i v e   p o l i c y  will c h a n g e   i n   r e a c t i o n   t o   t h e   b i d -  
d ing   po l icy   o f   one   b idder   and  how a b i d d e r ' s  
p r o f i t   i n   a n   a u c t i o n   d e p e n d s  upon h i s   p o l i c y   a n d  
t h a t   o f   h i s   c o m p e t i t o r s .  

Secondly, we h a v e   a p p l i e d   t h i s  model t o  
a p a r t i c u l a r   g e n e r a l i z a t i o n   o f  a symetr ic ,  n 
b idder ,  game theo re t i c ,   one - sho t   b idd ing  model. 
In  doing so ,  we have   changed   the   na ture   o f   the  
model. I t  is no l o n g e r   s t r i c t l y  a game t h e o r e t i c  
model. Each b idder  i s  now assumed t o  be   ac t ing  
on a behavioral   assumption  about how h i s  compet- 
i t o r s  will r e a c t   i n   t h e   f u t u r e  t o  h i s   p r e s e n t  
b idding   po l icy .   This   assumpt ion  may n o t   b e   s a t -  
i s f i e d  by t h e   a c t u a l   b e h a v i o r   o f   t h e   b i d d e r s   e v e n  
i f  each   b idde r   u ses  a similar model. By a n   a p p r e  
p r i a t e   c h o i c e   o f  our  parameter  a ,  it may be 
poss ib l e   t o   c lo se   t he   gap   be tween  what  each  bid- 
d e r   e x p e c t s   h i s   c o m p e t i t o r s   t o  do  and  what  each 
compet i tor  would  do i f  he  fol lowed  the  advice  of  
the  model.   This,   however,   has  not  yet   been  done. 

expec ted   r eac t ion   and   ac tua l   r eac t ion ,  we b e l i e v e  
In sp i t e   o f   t he   poss ib l e   gap   be tween  

t h a t   t h e   r e s u l t s   g i v e n   i n   e q u a t i o n s  ( 2 8 ) ,  (32) ,  
and   (33 )   p rov ide   i n s igh t   i n to   t he  effect  o f  com- 
p e t i t i v e   r e a c t i o n  on opt imal   bidding  pol icy  and 
t h e   p r o f i t   t o  be   pa id   by   b id   t akers .  I t  i s  i n -  
t e r e s t i n g   t h a t   t h e  effect  o f   t he   s equen t i a l   na tu re  
of   auc t ions   depends   on ly  upon a f a c t o r   t h a t  i s  
the   p roduc t   o f  a parameter   tha t   measures   the  
s t r eng th   o f   compe t i t i ve   r eac t ion   and  a s imple 
func t ion   o f   t he   d i scoun t   f ac to r   be tween   auc t ions .  
I t  i s  a l s o   u s e f u l   t o   o b s e r v e   t h a t   t h e   e x p e c t e d  
p r o f i t   o f   t h e   b i d d e r s  is qu i t e   non l inea r ly   depen-  
dent  upon t h i s   f a c t o r .   T h i s   s u g g e s t s  a number o f  
t a c t i c s   t h a t   b i d   t a k e r s   c a n   p u r s u e  i f  they   suspec t  
t h a t   t h e y  are p a y i n g   e x c e s s i v e   p r o f i t s   t o   s u p -  
p l i e r s   d u e   t o  t a c i t  c o l l u s i o n .  They may b e   a b l e  
t o   i n c r e a s e  m b y   r e d u c i n g   t h e   u n c e r t a i n t y   t h e  
b i d d e r s   f a c e ,   i n c r e a s e  n by b r ing ing   i n   add i -  
t i o n a l   b i d d e r s ,   d e c r e a s e  D by   t ak ing   b ids  less 
f requent ly ,   and   decrease  a by   chang ing   i n s t i -  
t u t i o n a l   f a c t o r s .   T h e s e   s t e p s   n i g h t   i n c l u d e  
making it more d i f f i c u l t   f o r   t h e   t r a d e   t o  react 
by  keeping  the amount o f   t he   w inn ing   b id  secret 
and   by   f requent ly   changing   the  l i s t  o f   i n v i t e d  
b i d d e r s  so  t h a t   t h e r e  i s  u s u a l l y  a t  l e a s t   o n e  new 
b i d d e r   p r e s e n t .  

For   b idders   the   message   of   th i s  model is 
r e s t r a i n   y o u r   a g g r e s s i v e n e s s   i n   r e p e t i t i v e   b i d -  
d i n g   s i t u a t i o n s  i f  you th ink   do ing  so will i n -  
f luence   your   compet i tors   to   behave  less aggres-  
s i v e l y   i n   t h e   f u t u r e .   A l s o ,  a b i d d e r   s h o u l d   t r y  
t o  c o n v i n c e   h i s   c o m p e t i t o r s   t h a t   h e  will react t o  
t h e i r   p o l i c y   c h a n g e s .  
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