
U
N

C
O

R
R

EC
TE

D
  P

R
O

O
F

RDA ios2a v.2008/05/27 Prn:25/07/2008; 15:09 F:rda05.tex; VTEX/Aust p. 1

Risk and Decision Analysis 00 (2008) 1–14 1
DOI 10.3233/RDA-2008-0005
IOS Press1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

VaR constrained hedging of fixed price
load-following obligations in competitive
electricity markets

Yumi Oum a and Shmuel Oren b

a Pacific Gas and Electric, San Francisco, CA, USA
b Department of Industrial Engineering and Operations Research, University of California at Berkeley,
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Abstract. Load serving entities providing electricity to regulated customers have an obligation to serve load that is subject to
systematic and random fluctuations at fixed prices. In some jurisdictions like New Jersey, such obligations are auctioned off
annually to third parties that commit to serve a fixed percentage of the fluctuating load at a fixed energy price. In either case the
entity holding the load following obligation is exposed to the load variation and to a volatile wholesale spot market price which
is correlated with the load level. Such double exposure to price and volume results in a net revenue exposure that is quadratic in
price and cannot be adequately hedged with simple forward contracts whose payoff is linear in price. A fixed quantity forward
contract cover, is likely to be short when the spot price is high and long when the spot price is low. In this paper we develop
a self-financed hedging portfolio consisting of a risk free bond, a forward contract and a spectrum of call and put options with
different strike prices. A popular portfolio design criterion is the maximization of expected hedged profits subject to a value at risk
(VaR) constraint. Unfortunately, that criteria is difficult to implement directly due to the complicated form of the VaR constraint.
We show, however, that under plausible distributional assumptions, the optimal VaR constrained portfolio is on the efficient
mean–variance frontier. Hence, we propose an approximation method that restricts the search for the optimal VaR constrained
portfolio to that efficient frontier. The proposed approach is particularly attractive when the mean–variance efficient frontier
can be represented analytically, as is the case, when the load and logarithm of price follow a bivariate normal distribution. We
illustrate the results with a numerical example.

Keywords: Energy risk, competitive electricity markets, volumetric hedging, incomplete markets

1. Introduction

Electricity is traded in the wholesale markets by nu-
merous market participants such as generators, load-
serving entities (LSEs),1 and marketers at the prices
determined by supply and demand equilibrium. Elec-
tricity market participants are exposed to risks in
their net earnings due to uncertain wholesale market
prices.

Electricity market prices are infamous for extremely
high volatility. During the summer of 1998, whole-
sale power prices in the Midwest of the US surged
to a stunning amount of $7000/MWh from the nor-
mal price range of $30–60/MWh causing the defaults

1Load-serving entities are companies who procure electricity
from wholesale electricity markets to serve their customer’s electric-
ity needs.

of two power marketers on the east coast. In Febru-
ary 2004, persistent high prices in Texas during an ice
storm that lasted three days led to the bankruptcy of
a retail energy provider that was exposed to spot mar-
ket prices. More recently in January and in June 2007
the Australian Electricity Market experienced several
events were prices rose to their maximum allowed level
of 10,000 Australian Dollar per MWh and in Texas on
March 3, 2008, two days after price caps on electricity
were raised to $2250/MWh, electricity prices reached
that high level due to a sudden drop of 1500 MW in
wind power generation.

In California during the 2000/2001 electricity cri-
sis wholesale spot prices rose sharply and persisted
around $500/MWh. The devastating economic conse-
quences of that crisis were largely attributed to the fact
that the major utilities, who were forced to sell power
to their customers at low fixed prices set by the regula-

1569-7371/08/$17.00 © 2008 – IOS Press and the authors. All rights reserved
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tor, were not properly hedged through long-term sup-
ply contracts. Such expensive lessons have raised the
awareness of market participants to the importance and
necessity of risk management practices in the compet-
itive electricity market.

The evident price risk in the competitive electric-
ity market has fueled the emergence of risk manage-
ment practices such as forward contracting and var-
ious hedging strategies. However, hedging strategies
that only concern price risks for a fixed amount of vol-
ume cannot fully hedge market risks faced by LSEs,
who are obligated to serve the uncertain electricity de-
mand of their customers. The volumetric risk – caused
by demand uncertainty – is a crucial risk factor faced
by LSEs that must serve their customers at regulated
fixed retail prices which can only be adjusted infre-
quently.

In some jurisdictions like New Jersey, LSEs auction
off their default load serving obligations to private en-
tities who assume the obligation to serve a fixed per-
centage slice of the total load at predetermined fixed
retail prices, set through an annual auction [6]. Such
entities assume the exposure to joint price and quantity
risk which they typically cover through a mix of owned
generation capacity, procurement of physical supply
contracts and through various financial hedging strate-
gies.

Volumetric risks in the electricity markets can be
very severe due to the adverse movements of the
wholesale price and demand both of which are affected
by weather conditions; for instance, the sales volume
is small when the profit margin is high, while it is large
when the margin is low or even negative. This is due
to the price inelasticity of demand and the resulting
strong positive correlation between spot price and de-
mand.

When such volumetric risk is involved, a company
should hedge against fluctuations in total cost, i.e.,
quantity times price but unfortunately, there are no
simple direct market instruments that would enable
such hedging and more complex hedging strategies are
needed. This paper investigates such hedging strate-
gies designed to mitigate both price and volumetric
risks faced by LSEs or default service providers hold-
ing fixed price load following obligations.

Our earlier paper [8] was devoted to constructing
the optimal static portfolio which consists of electric-
ity derivatives such as forwards and calls and puts
of different strikes. Specifically, we obtained the op-
timal hedging strategy that uses electricity derivatives
to hedge price and volumetric risks by maximizing the

expected utility of the hedged profit. When such a port-
folio is held by an LSE, the call options with strikes
being below the spot price will be exercised so that
the quantity corresponding to options being exercised
is procured at the strike prices. Using this strategy, the
LSE can set an increasing price limit on incremen-
tal load by paying the premiums for the options. This
strategy is not only effective in managing quantity risk
but was also suggested in the market design literature
such as Chao and Wilson [4], Oren [7] and Willems
[10] as means to achieve resource adequacy, mitigate
market power, and reduce spot price volatility.

In this paper, we extend our previous work by fo-
cusing on optimal self-financed hedging portfolios that
maximizes expected net hedged cashflow (profit) sub-
ject to a Value-at-Risk (VaR) constraint on that quan-
tity.

The LSE’s hedging problem of price and quantity
risk under the VaR criteria has been considered by Woo
et al. [11], Wagner et al. [9], and Kleindorfer and Li
[5]. The VaR, which is defined as a maximum possible
loss with (1 − γ) percent confidence, is a widely-used
risk measure in practice which has become a standard
tool in risk management. However, the optimization
problems with the VaR risk measure are hard to solve
analytically without very restrictive assumptions, espe-
cially when price and quantity risks are considered.

Woo et al. [11] solved for a forward position q
in order to minimize the expected procurement cost
PQ + (F − P )q subject to the VaR constraint where
P , Q and F are spot price, demand and forward price,
respectively. They solved the problem heuristically us-
ing a simple spreadsheet by setting possible hedge ra-
tios first, and examining the risk exposure on total cost.
Their normal distribution assumption on the procure-
ment cost simplified the calculation of the VaR mea-
sure.

More rigorous optimization was performed by Wag-
ner et al. [9] to determine the amounts of monthly for-
ward contracts to be purchased for the upcoming sev-
eral months. For an LSE who has to supply power at
a fixed rate, they provided a simulation-based algo-
rithm to solve the VaR-constrained problem, the prob-
lem of maximizing the expected hedged profit under
the VaR constraint. However, their method is ineffi-
cient because one has to evaluate VaR for all possible
combinations on the number of different forward con-
tracts.

Handling VaR analytically usually requires a nor-
mality assumption on the hedged cash flow as in Ahn
et al. [1]. However, this normality assumption is not
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suitable for problems where the cash flow distribution
is fat-tailed, like an LSEs’ cash flow.

Kleindorfer and Li [5] found a more relaxed as-
sumption than normality while still maintaining the
tractability of the normal distribution. Basically, when
VaR is monotone in the variance, multi-period VaR-
constrained problems were shown to be equivalent to
mean–variance problems. Moreover, they solved the
mean–variance problem that included various types
of contracts including options over the planning hori-
zon by transforming them into solvable quadratic pro-
grams. Kleindorfer and Li obtain the market prices of
derivatives and the mean and covariances of the whole-
sale electricity price, demand, and option payoffs from
a simulation package to find the optimal number of
derivative contracts.

In this paper, we seek a self financed, hedging port-
folio that maximizes the expected profit subject to
price and volumetric risk with a VaR constraint (Sec-
tion 2). In our formulation we represent the hedging
portfolio, as a general self-financed exotic option with
a nonlinear payoff contingent on the price of electric-
ity. Once we obtain the desired payoff function we
replicate it with a portfolio consisting of bonds, at the
money forwards, along with a spectrum of calls and
puts, with a continuum of strike prices.

We first motivate our proposed approximation meth-
od for the VaR constrained optimal portfolio by iden-
tifying conditions, in the spirit of Kleindorfer and Li,
under which the solution is on the efficient frontier
with respect to a mean–variance portfolio selection cri-
terion. This property holds, in the case of a normal,
Student-t and Weibull distributions and more gener-
ally for distributions where the VaR is a function of the
mean and standard deviations, which is monotonically
increasing in standard deviation and nonincreasing in
the mean (Section 3).

We exploit this property to approximate the op-
timal VaR constrained hedging portfolio by restrict-
ing the search to hedging portfolios on the efficient
mean–variance frontier under particular distributional
assumptions (Section 4). Unfortunately, we cannot
prove that the hedged profit distribution satisfies the re-
quired monotonicity properties so the solution we ob-
tain might be suboptimal. The search of suboptimal
solutions to the VaR constrained problem is not un-
common and can be justified from various perspec-
tives. For instance, we can exploit the fact that the
Chebyshev’s upper bound on the VaR of any distri-
bution is a function of the mean and standard devia-
tions, which is monotonically increasing in standard

deviation and nonincreasing in the mean. Hence, if we
tighten the VaR constraint by replacing it with a con-
straint on the Chebyshev bound, the optimal solution
to the more constrained problem (which is suboptimal
for the original VaR constrained problem) lies on the
efficient mean–variance frontier [2]. One could also ar-
gue that the tightness of the Chebyshev bound may be
used as an indicator for the sub-optimality and hence
the quality of the mean–variance approximation to the
VaR constrained problem.

We then provide a method of replicating the opti-
mal payoff function with a risk free bond, a forward
contract and a spectrum of call and put options with
different strike prices (Section 5). The portfolio is de-
signed to meet a value at risk (VaR) constraint on the
net hedged revenue of an entity holding a fixed price
load following obligation. The results are illustrated
through a numerical example (Section 6).

2. VaR-constrained hedging problem

We define VaR as a maximum possible loss at a
(1 − γ) confidence level. In other words, VaR is the
(1 − γ) percentile of the loss distribution.2 In this sec-
tion, we present a model for the hedging portfolio sub-
ject to a VaR limit set by the risk manager for a speci-
fied horizon. This preset VaR level will reflect the risk
tolerance of the risk manager.

Consider the LSE whose revenue is determined by a
fixed retail price r and the uncertain demand q. Denot-
ing uncertain wholesale electricity price per unit as p,
the profit y(p, q) from retail sales at time 1 depends on
the two random variable p and q. I.e.,

y(p, q) = (r − p)q.

Let LSE’s beliefs on the realization of spot price p and
load q be characterized by a joint probability function
f (p, q) for positive p and q, which is defined on the
probability measure P .

Suppose the LSE hedges the profit through an exotic
electricity option maturing at time 1. Let Y (x) be the
hedged profit, then

Y (x) = y(p, q) + x(p) = (r − p)q + x(p),

where x(p) is a payoff function of the exotic option,
which is contingent on the price of p.

2Loss is negative profit.
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With the VaR limit V0, the VaR-constrained hedging
problem is formulated as follows:

max
x(p)

E[Y (x)]

s.t. EQ[x(p)] = 0, (1)

VaRγ(Y (x)) � V0,

where

VaRγ(X) = ν such that

P{X � −ν} = 1 − γ

for a random variable X , and with E[·] and EQ[·] de-
noting expectations under the probability measures P
and Q, respectively. The formulation seeks the payoff
function of a self-financing hedging portfolio at time 1,
which maximizes the expected profit while requiring
that a 1 − γ percentile of the loss distribution does not
exceed V0.3

The zero-cost constraint EQ[x(p)] = 04 requires
the manufacturing cost5 of the portfolio to be zero
under a constant risk-free rate. This zero-cost con-
straint implies that purchasing derivative contracts may
be financed from selling other derivative contracts or
through money market accounts. In other words, un-
der the assumption that there is no limit on the possible
amount of instruments to be purchased and money to
be borrowed, the model finds a portfolio from which
the LSE obtains the maximum expected utility over to-
tal profit.

One might question the use of the optimal payoff
function solved from the formulation (1). The optimal

3The another possible formulation is:

min
x(p)

VaRγ (Y (x))

s.t. EQ[x(p)] = 0, (2)

E[Y (x)] � μ.

But one can prove that this formulation can be solved the same way
as the above formulation (1).

4Q is a risk-neutral probability measure under which the hedging
instruments are priced. Because the electricity market is incomplete,
there may exist infinitely many risk-neutral probability measures. In
this paper, it is assumed that a specific measure, Q, was picked ac-
cording to some criteria. There are many proposed criteria to choose
the risk-neutral measure in incomplete markets. See Xu [12] for this
subject.

5A derivative price is an expected value of the discounted payoff
under the risk-neutral measure Q. We ignore here transaction costs.

payoff function will eventually be used to derive the
optimal quantities of forwards and options at different
strike prices of which the hedging portfolio consists.
This approach of getting the payoff function first and
then calculating the portfolio composition that repli-
cates the payoff, not only makes the problem solvable
but also provides valuable insights regarding the opti-
mal hedging portfolio.

3. Optimal payoff function in the mean–variance
efficient frontier

The VaR constraint in the formulation (1) cannot
be written in a tractable form for optimization with-
out very restrictive assumptions on the distribution of
Y (x). If Y (x) is linear in the risk factors which are
normally distributed, then it is possible to write VaR
in a closed form. However, in the formulation (1),
Y (x) has a multiplicative term of two risk factors and,
moreover, a term of the unknown function x(p). Thus,
a closed form of VaR(Y (x)) cannot be obtained in a
form amenable to simple optimization.

The reason behind the normal distribution having
been a common assumption when calculating VaR is
the fact that the quantiles of the normal distribution
(actually, VaR) can be expressed using mean and vari-
ance. Likewise, when VaR can be expressed using
mean and variance – even in cases when a closed form
of the VaR cannot be obtained – the VaR-constrained
problem could be solved using the mean–variance
framework.

Therefore, a key assumption throughout this section
is that VaR(Y (x)) is solely determined by mean and
variance of Y (x). In the following theorem adopted
from Kleindorfer and Li [5] we show that under such
an assumption, monotonicity of the VaR in the mean
and variance of the Y (x) corresponding to feasible
hedging functions x(p) is sufficient to ensure that the
mean-maximizing VaR-constrained solution to (1) lies
on the efficient mean–variance frontier.

Theorem 1. Let

X(p) =
{
x(p): x(p) is a continuous function

of p such that EQ[x(p)] = 0
}

,

Ψ =
{
Y (x): Y (x) = y(p, q) + x(p),

where x(p) ∈ X(p)
}

,

E =
{
E[Y (x)]: Y (x) ∈ Ψ

}
,

Σ =
{
σ(Y (x)): Y (x) ∈ Ψ

}
,
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and R be a set of real numbers. Let us define
VaRγ(Y (x)) as ν such that

P{Y (x) � −ν} = 1 − γ.

Suppose now that there exists a continuous function
h : (E, Σ, γ) → R that satisfies

VaRγ(Y (x)) = h(μ, σ, γ)

with h(μ, σ, γ) which is increasing in σ and non-
increasing in μ for μ = E[Y (x)] and σ2 = V (Y (x)).6

Then if x∗(p) solves the problem (1), then the follow-
ing (a)–(e) hold:

(a) x∗(p) is on the efficient frontier of the (E–VaRγ)
plane,7 on which any feasible x(p) is mapped to a cor-
responding point (VaRγ(Y (x)), E[Y (x)]).

(b) x∗(p) is on the efficient frontier of the (E–V )
plane,8 on which any feasible x(p) is mapped to a cor-
responding point (V (Y (x)), E[Y (x)]).

(c) The variance on the efficient frontier in the
(E–V ) plane is nondecreasing in the mean.

(d) The variance on the efficient frontier in the
(E–V ) plane is a convex function of the mean.

(e) There exists k > 0 such that x∗(p) solves

max
x(p)∈X(p)

E[Y (x)] − 1
2
kV (Y (x)). (3)

Proof. (a) Obvious.
(b) From (a), x∗(p), the optimal solution to (1), is

on the efficient frontier of (E–VaRγ) plane. Now, con-
sider some alternative x(p) ∈ X(p) that can reduce
the variance without reducing the mean of the Y (x)
distribution, i.e., μ � μ∗ where μ = E[Y (x)] and
μ∗ = E[Y (x∗)] and σ2 < σ∗2 where σ2 = V (Y (x)),
and σ∗2 = V (Y (x∗)). Then, since h is nonincreasing
in μ and increasing in σ,

VaRγ(Y (x)) = h(μ, σ, γ)

� h(μ∗, σ, γ) < h(μ∗, σ∗, γ)

= VaRγ(Y (x∗)).

6V (·) denotes variance.
7Efficient frontier of the (E–VaRγ ) plane is a set of points

(VaRγ (Y (x)), E[Y (x)]) in (E–VaRγ ) plane for any feasible x
such that VaRγ (Y (x′)) � VaRγ (Y (x)), for any feasible x′ with
E[Y (x′)] � E[Y (x)].

8Efficient frontier of (E–V ) plane is a set of points
(V (Y (x)), E[Y (x)]) in (E–V ) plane for any feasible x such that
V (Y (x′)) � V (Y (x)) for any feasible x′ with E[Y (x′)] �
E[Y (x)].

However, this contradicts the assumption that x∗(p) is
on the efficient frontier in the (E–VaRγ) plane. This
implies that for a fixed γ a feasible perturbation on
x∗(p) that solves (1) cannot reduce the variance of the
Y (x) distribution without increasing the mean. Hence
x∗(p) is also on the efficient frontier in the (E–V )
plane.

(c) Obvious from the definition of the efficient fron-
tier.

(d) Consider (σ2
1, μ1) and (σ2

2, μ2) on the effi-
cient mean–variance frontier corresponding to feasible
hedging function x1(p) and x2(p), respectively. With-
out loss of generality assume that μ2 > μ1 and by
monotonicity of the mean–variance frontier σ2 > σ1.

Now consider x3(p) = αx1(p) + (1 − α)x2(p) for
some α ∈ [0, 1] and denote μ3 ≡ E[Y (x3)] = αμ1 +
(1 − α)μ2 and σ2

3 ≡ V (Y (x3)). Clearly by linearity of
the mean,

μ3 = αμ1 + (1 − α)μ2,

and x3(p) ∈ X(p). It follows from

σ2
3 = α2σ2

1 + (1 − α)2σ2
2 + 2α(1 − α)σ1σ2ρ,

where ρ ≡ Corr(Y (x1), Y (x2)) that

σ2
3 −

(
ασ2

1 + (1 − α)σ2
2

)
= −α(1 − α)σ2

1 − α(1 − α)σ2
2

+ 2α(1 − α)σ1σ2ρ

= −α(1 − α)
(
σ2

1 + σ2
2 − 2σ1σ2ρ

)
= −α(1 − α)V (Y (x1 − x2)) � 0,

because α ∈ [0, 1] and the variance is always nonneg-
ative. Therefore, σ2

3 � ασ2
1 + (1−α)σ2

2, which proves
concavity of the variance as function of the mean on
the efficient frontier if (σ2

3, μ3) is also on the efficient
frontier.

To prove that (σ2
3, μ3) is on the mean–variance

(M–V) efficient frontier, it is sufficient to show that any
feasible solution which yields mean larger than μ3 has
larger variance than σ2

3.
Now, let us consider a feasible x(p) with E[Y (x)] >

μ3. The proof is done if we show V (Y (x)) >
V (Y (x3)).

Note that x̂ = x(p)−x3(p) is also a feasible solution
with positive mean. Since x3 = αx1 + (1 − α)x2 and
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x = x3 + x̂, we have

Y (x) = αY (x1) + (1 − α)Y (x2) + x̂

= αY (x1 + x̂) + (1 − α)Y (x2 + x̂).

The last equality holds because Y (x) ≡ Y (x(p)) =
(r − p)q + x(p).

Because x1 and x2 is in the efficient frontier and
E[Y (xi + x̂)] > E[Y (xi)], we have, for i = 1, 2,

V (Y (xi + x̂)) > V (Y (xi)). (4)

Because V (Y (xi + x̂)) = V (Y (xi)+ x̂) = V (Y (xi))+
V (x̂) + 2 Cov(Y (xi), x̂), it follows from Eq. (4) that

2 Cov(Y (xi), x̂) > −V (x̂). (5)

This leads to the following inequality:

Cov(Y (x1 + x̂), Y (x2 + x̂))

= Cov(Y (x1) + x̂, Y (x2) + x̂)

= Cov(Y (x1), Y (x2)) + V (x̂)

+ Cov(Y (x1), x̂) + Cov(Y (x2), x̂)

> Cov(Y (x1), Y (x2))

+ V (x̂) − 1
2
V (x̂) − 1

2
V (x̂)

= Cov(Y (x1), Y (x2)).

Now we have V (Y (x)) > V (Y (x3)) because

V (Y (x))

= α2V (Y (x1 + x̂)) + (1 − α)2V (Y (x2 + x̂))

+ 2α(1 − α) Cov(Y (x1 + x̂), Y (x2 + x̂))

> α2V (Y (x1)) + (1 − α)2V (Y (x2))

+ 2α(1 − α) Cov(Y (x1), Y (x2))

= V (αY (x1) + (1 − α)Y (x2))

= V (Y (x3)).

(The inequality comes from Eqs (4) and (5).)
(e) The concavity in conjunction with the non-

decreasing property of the efficient mean–variance
frontier implies that for any x(p) on that frontier there
exists a unique k > 0 such that x(p) solves (3). In par-
ticular, this applies to x∗(p). �

Theorem 2. Let

xk(p) = arg max
x(p)∈X(p)

E[Y (x)] − 1
2
kV (Y (x)).

Then E[Y (xk)] and V (Y (xk)) are monotonically non-
increasing in k.

Proof. Let k2 > k1 > 0 and denote for simplicity
Y (xki ) = Yi for i = 1, 2. Then

E(Y1) − k1V (Y1) � E[Y2] − k1V (Y2),

E(Y2) − k2V (Y2) � E[Y1] − k2V (Y1).

Adding the two inequalities gives

(k2 − k1)V (Y1) � (k2 − k1)V (Y2)

implying V (Y1) � V (Y2). Also we have from the first
inequality,

E(Y1) − E[Y2] � k1(V (Y1) − V (Y2)) � 0.

So we have

E[Y1] � E[Y2]. �

Theorem 1 states that the feasible set of the VaR-
constrained problem is restricted to the solutions of
mean–variance problems for varying k. Therefore, the
solution to (1) can be obtained in the following way:

(a) Obtain

xk(p) = arg max
x(p)∈X(p)

E[Y (x)] − 1
2
kV (Y (x)).

(b) For each k, calculate VaR(k) ≡ VaR(Y (xk))
such that

P
{
Y (xk) � −VaR(k)

}
= 1 − γ.

(c) Find k such that VaR(k) � V0 that maximizes
E[xk(p)], i.e.,

x∗(p) = xk∗
(p),

where k∗ = arg max
k

E
[
xk(p)

]
s.t. VaRγ(k) � V0.

By Theorem 2, such k is the smallest k with
VaRγ(k) � V0.



U
N

C
O

R
R

EC
TE

D
  P

R
O

O
F

RDA ios2a v.2008/05/27 Prn:25/07/2008; 15:09 F:rda05.tex; VTEX/Aust p. 7

Y. Oum and S. Oren / VaR constrained hedging of fixed price load-following obligations 7

1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

4. The optimal payoff function when the demand
and log price follows bivariate normal
distribution

It is often assumed that the electricity demand and
logarithm of price are normally distributed with some
correlation. In Proposition 1 and Lemma 1, we show
that under such assumption a closed form of xk(p) can
be obtained. We have also shown in the previous sec-
tion that E[Y (xk(p))] and the variance V [Y (xk(p))]
are nonincreasing in k. We will now describe an ap-
proximation procedure that searches for an approxi-
mate solution to the VaR-constrained expected-value-
maximizing self-financed hedging function along the
mean–variance efficient frontier. The justification for
this approximation is motivated by the intuitively plau-
sible properties of the VaR that make such an approx-
imation exact. The approximation is also supported by
the fact that the required properties are met by the
Chebyshev upper bound9 on the VaR so that tight-
ening the VaR constraints by replacing the VaR with
its Chebyshev approximation will also produce results
that lie on the mean–variance efficient frontier.

To obtain the approximate solution we characterized
above, we start with k = ε (ε is a small constant).
Using the formula for xk(p) given in (8), we compute
the corresponding VaRγ(k) ≡ VaRγ(Y (xk(p))) using
a Monte Carlo simulation such that

P
{

(r − p)q + xk(p) � −VaRγ(k)
}

= 1 − γ.

We then repeat the process incrementing k until
VaRγ(k) � V0 at which point we set k∗ = k. The
monotonicity of the mean in k coming from Theorem 2
guarantees that the first k at which the VaR constraint
is satisfied will yield the largest expected value.

Proposition 1. Maximizing the mean–variance utility
function on profit,

E[U (Y )] = E[Y ] − 1
2
kVarγ(Y ),

9Chebyshev’s inequality says that P {|X − E[X]| � k} �
σ2(X)/k2 for any random variable X with finite mean E[X] and
variance σ2(X), and any positive real number t. With k = tσ(X),
P {|X − E[X]| � tσ(X)} � 1

t2 . It follows that:

P {X � E[X] − tσ(X)} � 1

t2
.

Therefore, VaR1−1/t2 (X) � tσ(X) − E[X] [2].

yield an optimal solution x∗(p) to problem

max
x(p)

E
[
U [Y (p, q, x(p))]

]
(6)

s.t. EQ[x(p)] = 0

that is given by

x∗(p)

=
1
k

(
1 − g(p)/fp(p)

EQ[g(p)/fp(p)]

)

− E[y(p, q) | p]

+ EQ[
E[y(p, q)|p]

] g(p)/fp(p)

EQ[g(p)/fp(p)]
, (7)

where fp(p) is the marginal distribution of p under
probability measure P , and g(p) is the probability den-
sity function of p under risk-neutral measure Q.

Proof. The proof is given in the Appendix. �

Lemma 1. Suppose the marginal distributions of p
and q are as follows:

Under P : log p ∼ N (m1, s2),

q ∼ N (m, u2),

Corr(log p, q) = ρ,

Under Q: log p ∼ N (m2, s2).

Then, the solution to (3) is

xk(p) =
1

2k

(
1 − ApB)

− (r − p)

(
m + ρ

u

s
(log p − m1)

)

+ CApB , (8)

where the constants are

A = e−
(m1−m2)(m1−3m2)

2s2 ,

B =
m2 − m1

s2 ,

C =
(
r − em2+

1
2 s2)(

m − ρ
u

s
m1

)

+ ρ
u

s

(
rm2 − (m2 + s2)em2+

1
2 s2)

.
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Proof. Proof from Proposition 1, the optimal solution
of (3) is:

xk(p) =
1

2k

(
1 − g(p)/fp(p)

EQ[g(p)/fp(p)]

)

− E[y(p, q)|p]

+ EQ[
E[y(p, q)|p]

]
× g(p)/fp(p)

EQ[g(p)/fp(p)]
. (9)

From a density function of lognormal distribution,
we have

g(p)
fp(p)

=
1

ps
√

sπ

× exp

(
−1

2

(
log p − m2

s

)2)/
(

1
ps
√

sπ
exp

(
−1

2

(
log p − m1

s

)2))

= exp

(
m2 − m1

s2 log p +
m2

1 − m2
2

2s2

)
.

Since m2−m1
s2 log p + m2

1−m2
2

2s2 ∼ N(m2−m1
s2 m2 +

m2
1−m2

2
2s2 , (m2−m1

s2 )2s2) under Q, we obtain

EQ[ g(p)
fp(p) ] = exp(m2−m1

s2 m2 + m2
1−m2

2
2s2 +

1
2 (m2−m1

s2 )2s2)) = exp( (m1−m2)2

s2 ) and thus,

g(p)/fp(p)

EQ[g(p)/fp(p)]

= exp

(
m2 − m1

s2 log p

+
m2

1 − m2
2

2s2 − (m1 − m2)2

s2

)

= e−
(m1−m2)(m1−3m2)

2s2 p
m2−m1

s2 . (10)

On the other hand,

E[y(p, q) | p]

= E[(r − p)q|p]

= (r − p)E[q|p]

= (r − p)

(
m + ρ

u

s
(log p − m1)

)
, (11)

and thus,

EQ[y(p, q) | p]

=
(
r − EQ[p]

)(
m − ρ

u

s
m1

)

+ ρ
u

s

(
rEQ[log p] − EQ[p log p]

)
=

(
r − em2+

1
2 s2)(

m − ρ
u

s
m1

)

+ ρ
u

s

(
rm2 − (m2 + s2)em2+

1
2 s2)

. (12)

Plugging (10)–(12) into (9) results in Eq. (8). �

5. Replication of exotic payoffs

Once the optimal payoff function is obtained by the
algorithm given in the previous section, we construct a
portfolio composed of standard instruments that repli-
cates the exotic payoff function obtained.

Carr and Madan [3] showed that any twice continu-
ously differentiable function x(p) can be written in the
following form:

x(p) = [x(s) − x′(s)s] + x′(s)p

+
∫ s

0
x′′(K)(K − p)+ dK

+
∫ ∞

s
x′′(K)(p − K)+ dK

for an arbitrary positive s.10 This formula suggests a
way of replicating the payoff function x(p). Let F be
the forward price for delivery at time 1. Evaluating the
equation at s = F and rearranging it gives

x(p) = x(F ) · 1 + x′(F )(p − F )

+
∫ F

0
x′′(K)(K − p)+ dK

+
∫ ∞

F
x′′(K)(p − K)+ dK. (13)

10The simplest way of proving the formula is as follows:∫ s

0
x′′(K)(K − p)+ dK +

∫ ∞
s

x′′(K)(p − K)+ dK =∫ p

s
x′′(K)(p − K) dK = [x′(K)(p − K)]ps +

∫ p

s
x′(K) dK =

−x′(s)(p− s)+x(p)−x(s); the first equality was obtained by con-
sidering the both cases of p < s and p � s, and the second equality
results from the integration by part.
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Note that 1, (p − F ), (K − p)+ and (p − K)+ in
the above expression represent payoffs at time 1 of
a bond, forward contract, European put options, and
European call options, respectively. Therefore, an ex-
act replication can be obtained from a long cash po-
sition of size x(F ), a long forward position of size
x′(F ), long positions of size x′′(K) dK in puts struck
at K, for a continuum of K < F , and long positions
of size x′′(K) dK in calls struck at K, for a contin-
uum of K > F . Note that unless the optimal payoff
function is linear, the optimal strategy involves pur-
chasing (or selling short) a spectrum of both call and
put options with continuum of strike prices. This re-
sult demonstrates that in order to hedge price and quan-
tity risks together, LSEs should purchase a portfolio
of options. The strike prices of call options effectively
work as price caps on load increments. In practice,
electricity derivatives markets, as any derivatives mar-
kets, are incomplete. Consequently, the market does
not offer options for the full continuum of strike prices,
but typically only a small number of strike prices are
offered. To implement the above replicating strategy
using a discrete set of standard options contracts, we
need to discretize the strike prices and approximate
the optimal payoff function using a set of discrete op-
tion at the available strike prices. We provide here
an approximate replication of an exotic payoff func-
tion using the existing Vanilla options so that the total
payoff from those options is close to the exotic pay-
off. Suppose there are put options with strike prices
K1 < · · · < Kn = F and call options with strike
prices F = K ′

1 < · · · < K ′
m in the market. Letting

Kn+1 = Kn, K0 = 0, K ′
0 = K ′

1, and K ′
m+1 = ∞,

consider the following strategy, which consists of:

• a long cash position of size x(F ),
• a long forward position of size x′(F ),
• long positions of size 1

2 (x′(Ki+1) − x′(Ki−1)) in
puts struck at Ki (i = 1, . . . , n),

• long positions of size 1
2 (x′(K ′

i+1) − x′(K ′
i−1)) in

calls struck at K ′
i (i = 1, . . . , m).

This strategy was obtained by the following approx-
imations:∫ F

0
x′′(K)(K − p)+ dK

+
∫ ∞

F
x′′(K)(p − K)+ dK

=
n−1∑
i=0

∫ Ki+1

Ki

x′′(K)(K − p)+ dK

+
m∑

i=1

∫ K′
i+1

K′
i

x′′(K)(p − K)+ dK

≈
n−1∑
i=0

∫ max(p,Ki+1)

max(p,Ki)
x′′(K) dK

× 1
2

{
(Ki − p)+ + (Ki+1 − p)+

}

+
m∑

i=1

∫ min(p,K′
i+1)

min(p,K′
i)

x′′(K) dK

× 1
2

{
(p − K ′

i)
+ + (p − K ′

i+1)+
}

≈
n−1∑
i=0

∫ Ki+1

Ki

x′′(K) dK

× 1
2

{
(Ki − p)+ + (Ki+1 − p)+

}

+
m∑

i=1

∫ K′
i+1

K′
i

x′′(K) dK

× 1
2

{
(p − K ′

i)
+ + (p − K ′

i+1)+
}

=
n∑

i=1

∫ Ki+1

Ki−1

x′′(K) dK · 1
2

(Ki − p)+

+
m∑

i=1

∫ K′
i+1

K′
i−1

x′′(K) dK · 1
2

(p − K ′
i)

+.

In this approximation scheme, the error will be small
if x′′(p) is a constant in each interval between two con-
secutive strike prices, and when price realizations p are
close to the discrete strike prices. The error can be re-
duced by refining the strike price discretization in the
range were there is a high probability that p will fall.

6. An example

In this section we demonstrate the computation of
an approximate optimal VaR-constrained volumetric
hedging problem using the method developed in the
previous section. Consider a hypothetical LSE that
charges a flat retail rate r = 120/MWh to its customers.
The wholesale spot price p at which the LSE must pur-
chase its power and the load q it is obligated to serve
in any fixed time interval (typically 15 min), are dis-
tributed according to a bivariate distribution in quantity
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and log price:

Under P : log p ∼ N(4, 0.72),

q ∼ N(3000, 6002),

Corr(log p, q) = 0.8,

Under Q: log p ∼ N(4.1, 0.72).

Note that we assume here P 	= Q. Otherwise, the
mean–variance problem has the same solution for all k.
In such case, the VaR-constrained problem either has
the same solution as the variance-minimizing problem,
or is infeasible.

Figure 1 shows a distribution of unhedged profit,

y(p, q) = (120 − p)q.

95% VaR is also indicated in the figure, which is about
$20,000. The mean of the distribution is $127,000.
This implies that there is 5% chance that the LSE can
take a loss of more than $20,000.

The VaR-constrained problem for the LSE which
seeks a hedging strategy that maximizes the expected
profit with at least $60,000 profit with 95% probability
is formulated as follows:

max
x(p)

E[Y (x)]

s.t. EQ[x(p)] = 0, (14)

VaRγ(Y (x)) � −60,000,

Fig. 1. Distribution of the unhedged profit y(p, q) = (r − p)q.

where Y (x) = (120 − p)q + x(p) and Pr{Y (x) �
−VaRγ(Y (x))} = 0.95.

Motivated by Theorem 1 we restrict our search for
solution to the VaR constrained problem to optimal
solutions for the mean–variance problems for various
risk-aversion levels k and for each such candidate so-
lution we compute the corresponding VaR. The rela-
tionship between VaR and k is drawn in Fig. 2 as an
example. The figure also shows the mean of the hedged
profit, E[Y (xk)], on the right axis, which is non-
increasing in k as proven in Theorem 2. Because of the
monotonicity of the mean in k selecting the first value
of k that meets the VaR constraint as k∗ = 3.5 × 10−6

gives the largest mean value with −VaRγ(k) � 60,000
among all hedging portfolios that maximize a mean–
variance criterion.

Figure 3 illustrates the mean–variance efficient fron-
tier and the corresponding mean–VaR frontier for our
example. Note that the mean–VaR frontier is the ef-
ficient mean–VaR frontier only if the distribution of
hedged profit satisfies the monotonicity properties pos-
tulated in Theorem 1.

The optimal mean–variance hedging strategy corre-
sponding to k∗ and hence, the approximation to the op-
timal mean–VaR hedging strategy, is shown in Fig. 4.
Figure 4(a) shows the payoff function x∗(p) ≡ xk∗

(p)
obtained as an approximation for the VaR-constrained
problem, and Fig. 4(b) illustrates its replicating strat-
egy consisting of forwards, calls, and puts, as described
in Section 5.

Figure 5 compares profit distributions before and af-
ter hedging. One can see that the hedge obtained as

Fig. 2. −VaR(k) in the left y-axis and E[Y (xk(p))] in the right
y-axis. The optimal k∗ is obtained as the first k that provides −VaR
no less than the required level 60,000.
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(a) (b)

Fig. 3. Mean–variance frontier (a) and mean–VaR frontier (b).

(a) (b)

Fig. 4. Hedging strategy for an LSE that maximizes the expected payoff with VaR constraints of −$60,000. The underlying distributions of
spot prices and load are log p ∼ N(4, 0.72), q ∼ N(3000, 6002), and Corr(log p, q) = 0.8 (assuming r = $120/MWh). (a) The optimal payoff
function; (b) replicating strategy.

an approximate solution to the VaR-constrained prob-
lem reduces the left-tail of the profit distribution sig-
nificantly.

Figure 6 shows the profit distributions for differ-
ent k. The corresponding −VaR is represented as the
vertical line from the distribution to the x-axis. k =
3.5 × 10−6 corresponds to profit after the optimal
hedge. One can see that k = 2 × 10−6 gives the
higher expected value, 1.13×105, than the optimal one,
but it was rejected from the feasible hedge because its
VaR level exceeds the required level of −$60,000. The
graph for k = 5×10−6 shows a case of VaR satisfying
the required level, but it was not chosen for the opti-

mum since it provides a lower expected profit than the
optimal one.

7. Conclusion

This paper developed a method of mitigating price
and volumetric risk that load-serving entities (LSEs)
and marketers of default service contract face in pro-
viding their customers’ load following service at fixed
or regulated prices while purchasing electricity or fac-
ing an opportunity cost at volatile wholesale prices.
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Fig. 5. Profit distributions and VaRs before and after the optimal
hedge.

Fig. 6. Profit distribution and its VaR for various levels of k.

Exploiting the inherent positive correlation and mul-
tiplicative interaction between wholesale electricity
spot price and demand volume, we developed a hedg-
ing strategy for the LSE’s retail positions (which is in
fact a short position on unknown volume of electric-
ity) using electricity standard derivatives such as for-
wards, calls, and puts. The hedging strategy is intended
to maximize the expected profit under the VaR con-
straint, which limits the lowest level below which the
hedged profit would not fall with 95% confidence.

However, VaR constrained problems are generally
very hard to solve analytically unless the value or
profit under consideration is normally distributed. In
our case, the profit depends on the product of the two

correlated variables. Moreover, our hedging strategy
is characterized by a nonlinear function of a random
variable. We address this difficulty by limiting our
search to feasible VaR-constrained self-financed hedg-
ing portfolios on the mean–variance efficient frontier.
We provide theoretical justification to such an approx-
imation and derive, an analytic representation of hedg-
ing portfolios on the mean–variance efficient frontier
as function of the risk aversion factor.

The computation of an approximate solution to the
VaR-constrained problem on the mean variance effi-
cient frontier is facilitated by the fact that it corre-
sponds to the smallest risk-aversion factor whose asso-
ciated VaR meets the constraint limit.

When one uses the mean–variance formulation, it
is usually easy to solve the problem, but hard to de-
cide what the appropriate risk-aversion factor is. The
analysis in this section implies that one can use a VaR-
constrained formulation as an alternative, which takes
one of the mean–variance solutions but automatically
chooses associated risk aversion at which the maxi-
mum mean is achieved while maintaining the required
VaR level. The advantage of using the VaR-constrained
formulation is that VaR is easier to interpret, and it is a
widely used risk-measure in practice.

To obtain a realistic hedging portfolio, we solved
for the payoff function that represents the payoff of a
costless exotic option as a function of price. We then
showed how that exotic option can be replicated using
a portfolio of forward contracts and European options.

While at present the liquidity of electricity options
is limited, the use of call options has been advocated
by Oren [7] and Chao and Wilson[4] in the electric-
ity market design literature as a tool for resource ade-
quacy, market power mitigation, and spot volatility re-
duction. These authors advocated capacity payments
in the form of option premiums that will incent capac-
ity investment, and ensure electricity supply at a pre-
determined strike price. Better understanding of how
call options can facilitate risk management associated
with service obligations, capacity investment and en-
ergy trading will hopefully increase their use and liq-
uidity.
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Appendix. Proof of Proposition 1

The Lagrangian function for the optimization prob-
lem (6) is given by

L(x(p)) = E
[
U

(
Y (p, q, x(p))

)]
− λEQ[x(p)]

=
∫ ∞

−∞
E[U (Y )|p]fp(p) dp

− λ

∫ ∞

−∞
x(p)g(p) dp

with a Lagrange multiplier λ and the marginal density
function fp(p) of p under P . Differentiating L(x(p))
with respect to x(·) results in

∂L

∂x(p)
= E

[
∂Y

∂x
U ′(Y )

∣∣∣p]
fp(p) − λg(p) (15)

by the Euler equation. Setting (15) to zero and substi-
tuting ∂Y

∂x = 1 yields the first order condition for the
optimal solution x∗(p) as follows:

E
[
U ′(Y (p, q, x∗(p))

)
|p

]
= λ∗ g(p)

fp(p)
. (16)

Here, the value of λ∗ should be the one that satisfies
the constraint EQ[x(p)] = 0.

It follows from Var(Y ) = E[Y 2] − E[Y ]2 that

U (Y ) ≡ Y − 1
2
a
(
Y 2 − E[Y ]2).

From U ′(Y ) = 1 − aY , the optimal condition (16) is
as follows:

E[1 − aY ∗|p] = λ∗ g(p)
fp(p)

.

Equivalently,

fp(p) − aE[Y ∗|p]fp(p) = λ∗g(p). (17)

Integrating both sides with respect to p from −∞ to
∞, we obtain λ∗ = 1 − aE[Y ∗]. By substituting λ∗

and Y ∗ = y(p, q) + x∗(p) into (17) gives:

fp(p) − a
(
E[y(p, q)|p] + x∗(p)

)
fp(p)

= g(p) − a
(
E[y(p, q)] + E[x∗(p)]

)
g(p).

By rearranging, we obtain

x∗(p) =
1
a
− 1

a

g(p)
fp(p)

+
(
E[y(p, q)] + E[x∗(p)]

) g(p)
fp(p)

− E[y(p, q)|p]. (18)

To cancel out E[x∗(p)] in the right-hand side, we take
the expectation under Q to the both sides to obtain

0 =
1
a
− 1

a
EQ

[
g(p)
fp(p)

]

+
(
E[y(p, q)] + E[x∗(p)]

)
EQ

[
g(p)
fp(p)

]
n

− EQ[
E[y(p, q)|p]

]
, (19)

and subtract Eq. (19) × g(p)/fp(p)
EQ[g(p)/fp(p)]

from Eq. (18).

This gives the final formula for the optimal payoff
function under mean–variance utility as

x∗(p) =
1
a

(
1 − g(p)/fp(p)

EQ[g(p)/fp(p)]

)

− E[y(p, q)|p]

+ EQ[
E[y(p, q)|p]

]
× g(p)/fp(p)

EQ[g(p)/fp(p)]
. (20)
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