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Abstract

Many industries are exposed to weather risk. Weather derivatives can play
a key role in hedging and diversifying such risk because the uncertainty in
a company’s profit function can be correlated to weather condition which af-
fects diverse industry sectors differently. Unfortunately the weather derivatives
market is a classical example of an incomplete market that is not amenable
to standard methodologies used for derivative pricing in complete markets. In
this paper, we develop an equilibrium pricing model for weather derivatives in a
multi-commodity setting. The model is constructed in the context of a stylized
economy where agents optimize their hedging portfolios which include weather
derivatives that are issued in a fixed quantity by a financial underwriter. The
supply and demand resulting from hedging activities and the supply by the un-
derwriter are combined in an equilibrium pricing model under the assumption
that all agents maximize some risk averse utility function. We analyze the gains
due to the inclusion of weather derivatives in hedging portfolios and examine
the components of that gain attributable to hedging and to risk sharing.

1 Introduction

Weather affects the revenue and net earnings in many industries. [Dutton, 2002] es-

timates that one third of private industry activities, representing some three trillion

dollars annually, bears some degree of weather and climate risk. Energy, agriculture,

leisure and insurance are good examples of weather-sensitive industries. The profit

function of each industry has retail price, cost, and demand as common factors and

these, possibly random, can be affected by weather. For example, the profit function

of energy distribution companies, which are obligated to serve uncertain demand at a

fixed regulated price, has two random components, spot price and demand. There-

fore, energy companies face two types of risk, price risk in the spot market and
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volumetric risk (or quantity risk) caused by demand fluctuations. Moreover, the

energy industry is exposed to weather risk because the energy demand is highly

dependent on weather conditions. These price, volumetric and weather risks are all

correlated; unexpected weather changes will affect energy demand and sudden de-

mand increases result in spot price spikes. Another example of a weather-sensitive

industry is agriculture where weather can affect the production while the change in

supply impacts the market price. Thus a farmer is exposed both to risk of price

fluctuations and to risks associated with the quantity and quality of his crop, all of

which are affected by weather.

There is ample evidence in the energy industry showing that volumetric risk

caused by unexpected hot or cold days leads to extremely volatile spot prices. In

the summer of 1998, for example, the wholesale electricity price in the US Midwest

rose to $7000/MWh, causing the default of two East Coast electricity companies.

At that time the normal price range was around $30 ∼ $60. In Texas during a

three-day ice storm in February 2003 electricity prices spiked to $990/MWh causing

a retail energy provider that was not adequately hedged to declare bankruptcy(see

[Deng and Oren, 2006]). More recently on January 16, 2007 and subsequently on

June 13, 2007, South Australia and Victoria experienced persistent high tempera-

ture that led to record consumption of electricity resulting in wholesale spot prices

reaching $10,000/MWh. In the natural gas market, during the first quarter of 2003,

an unusually cold winter and supply limitations drove the spot price of natural gas to

a peak of $18.60/MMBtu, as compared with a normal range of $4 to $5/MMBtu.1

Summer spikes in gas prices are also common and are largely attributable to air

conditioning use on hot summer days, since 18.7% of electricity generation capacity

in the US is fueled by natural gas.

In spite of strongly correlated risks, weather risk is left unhedged in most weather-

sensitive industries, whereas price risk has been hedged directly via commodity

derivatives, if available. However, the business environment gets more competi-

tive and rapidly changing, companies need to stabilize their revenues. This can be

achieved by considering all types of risks such as price, volumetric and weather risks

and managing these risks properly. One possible way to mitigate volumetric risk is

through storage of the inputs and output of the corresponding production activity.

Most energy commodities except electricity can be stored. However, the storability

1Gas Daily Henry Hub Price February 26, 2003.
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cannot fully eliminate volumetric risk because of the long lead time and cost for stor-

age capacity expansion. An alternative approach is weather insurance. However,

typical insurance contracts are intended to cover catastrophic events such as earth-

quakes, hurricanes, and storms. While such insurance coverage addresses the needs

of most industries that are affected by disastrous events, typical weather insurance

does not provide protection for revenue exposure of weather-sensitive industries that

is affected by less extreme weather changes such as a warm winter and a cool sum-

mer. Hence, weather derivatives can be considered as an effective means of covering

non-catastrophic weather conditions. Moreover, weather derivatives provide a sim-

ply calculated payoff based on underlying weather indices that do not require proof

of loss as typical insurance contracts do. Weather derivatives are financial contracts

with a certain payout that depends on weather indices like temperature, rainfall

and snowfall. The most commonly used indices are Cooling-Degree-Days(CDD)

and Heating-Degree-Days(HDD). In section 2 we will define CDD and HDD and

give a short overview of the weather derivatives market.

Despite the advantages and increased use of weather derivatives, there is no

effective pricing model for these instruments. The weather derivatives market is

a classical example of an incomplete market because the underlying temperature

is not a tradable commodity or equity share. Therefore, we cannot apply classi-

cal arguments based on the existence of the risk neutral probability measure or a

perfect replication of the weather derivatives payoff. In a discrete time framework,

[Cao and Wei, 1999] suggest an equilibrium pricing model based on the Euler equa-

tion and the fact that in equilibrium both the financial market and the goods market

clear so that aggregate consumption equals the dividends generated from the risky

stock. From this fact they calculate a Stochastic Discount Factor(SDF) and used it

to price weather derivatives. [Brockett and Wang, 2006] derive an indifference pric-

ing model for weather derivatives of cities which are not listed in exchanges. The

concept of indifference pricing is based on the principle that the maximized utility of

buyers(sellers) without weather derivatives should be equal to the maximized utility

with weather derivatives accounting for the buying price(selling price) and the pay-

off. [Platen and West, 2004] provide a fair pricing model, based on the idea that the

growth-optimal portfolio is used as a numeraire and all derivative price processes

discounted by the growth optimal portfolio(benchmarked) are martingales.

In a continuous time framework, [Richards et al., 2004] suggested an equilib-
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rium pricing model based on temperature processes of a mean-reverting Brownian

motion with discrete jumps and autoregressive conditional heteroscedastic errors.

A standard Euler equation from the Lucas general equilibrium valuation model

was applied to pricing CDD weather options. Also see [Ankirchner et al., 2006] for

the indifference pricing approach in continuous time. [Hamisultane, 2007] infer the

risk-neutral distribution by minimizing the second derivatives of the simulated risk-

neutral distribution. [Chaumont et al., 2005] discuss the market price of risk which

is determined by a backward stochastic differential equation that can be translated

into semi-linear partial differential equations. These later approaches can be viewed

as an actuarial perspective since the price of the weather derivatives are based on the

exposure of the weather derivative underwriter to weather risk. In typical weather

derivative markets, however, an underwriter has only limited control over prices

since the quantity of weather derivatives is fixed, unlike an insurance company that

directly controls premiums with no precommitment to the number of contracts. The

ultimate price of the weather derivatives is determined by supply and demand re-

sulting from hedging activities of market agents exposed to weather risk who are

optimizing their hedging portfolios. Such prices may not fully reflect the under-

lying stochasticity of the temperature process which would require a continuous

adjustment by the underwriter of the outstanding weather derivatives quantities.

The main purpose of this paper is to derive an equilibrium pricing model for

weather derivatives and to measure risk hedging and sharing gains that accrue to

the market participants due to the inclusion of such instruments in their volumet-

ric hedging portfolios. First, we will derive the optimal portfolio choices from the

expected utility maximization problems of market participants. Using derived opti-

mal demand we calculate an equilibrium price for the weather derivative by applying

the market clearing condition requiring that the aggregate demand be equal to the

aggregate supply. The number of the weather derivative supplied will be decided

based on the issuer’s single period expected utility maximization problem, however,

for some industries it may make sense to take short positions which effectively in-

creases the supply of the shorted instruments and will affect their prices. Clearly, the

primary role of weather derivatives is to hedge weather risk. In a single-commodity

economy, the risk hedging gain is the only gain possible. To measure the risk hedg-

ing effect we use the certain equivalent difference of maximized utility between two

cases, with and without weather derivatives in a single-commodity economy. In a
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multi-commodity setting weather derivatives also provide a mechanism for risk shar-

ing. Any two agents share risk if they employ state-contingent transfers to increase

the expected utility of both by reducing their risk2. Such risk sharing is possible

due to the diversity in exposure to weather risk and different risk preferences among

industries participating in weather derivatives markets. We measure the risk sharing

effect in terms of certain equivalent difference of maximized utility between a single

and multi-commodity economy. We note that the risk sharing effect measured by

the above method includes not only the risk sharing effect but also a price effect

since in the multi-commodity economy higher demand for weather derivatives due to

more market participants makes the equilibrium price higher and paying more can

reduce the maximized utility level of buyers. To correct such distortion we adjust

the risk aversion coefficient for the issuer so as to equalize the equilibrium price in

a single and multi-commodity economy.

This paper is organized as follows. In section 2 we provide an overview of

the weather derivatives market and section 3 shows the mathematical formulations

underlying the derivation of the equilibrium price. In section 4 we derive a closed

form of the equilibrium pricing model for the special case where all the agents

have the mean-variance utility functions and in section 5 we illustrate these results.

Section 6 concludes and highlights the results of the paper.

2 Overview of the Market for Weather derivatives

Early trading of weather based instruments among energy companies started as over-

the-counter(OTC) trades which means that each contract is individually negotiated.

OTC trades are still used for weather derivatives for local cities which are not listed

in exchanges. In September 1999 the first electronic market place for standardized

weather derivatives was launched by the Chicago Mercantile Exchange(CME) with

the aim of increasing liquidity, market integrity, and accessibility. This market expe-

rienced phenomenal growth and currently Cooling Degree Day (CDD) and Heating

Degree Days (HDD) futures and options for 19 cities in the US, 9 cities in Europe, 6

cities in Canada, and 2 cities in Japan are being traded on the CME. These include

New York, Chicago, Philadelphia, London, Paris and Berlin. Other types of con-

tracts based on frost days and snowfall are also traded on the CME. The Weather

2Ligon (2005) The New Palgrave’s Dictionary of Economics
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derivatives markets are expanding rapidly as diverse industries seek to manage their

exposure for weather risks. The notional value of CME weather products in 2004

was $2.2 billion, and grew ten-fold to $22 billion through September 2005, with vol-

ume surpassing 630,000 contracts traded.[CME, 2005]. In 2006 the value of traded

weather instruments rose to 45 billion.

The most commonly traded weather indices are monthly or seasonal HDD/CDD

strips. The calculation of CDD/HDD is based on the average daily temperature on

a day i, which is defined as the average of the maximum and minimum temperature

during that day, i.e.,

Ti ≡
Tmax

i + Tmin
i

2
(1)

From here on in referring to temperature, we mean daily average temperature. Daily

CDD/HDD can be defined as:

daily CDDi = max(Ti − 65◦F, 0) (2)

daily HDDi = max(65◦F − Ti, 0) (3)

Monthly or seasonal CDD/HDD can be defined by summing up daily CDD/HDD

over the month or season. Seasonal strips bundle two or more consecutive months

into a single contract. The HDD index can be interpreted as a measurement of the

coldness during the contract periods relative to the industry standard 65◦F at which

people are supposed to feel comfortable. Similarly CDD is a measure of heat over

the contract period relative to the 65◦F norm.

The CME offers weather futures and options which are the same as financial fu-

tures and options except for the underlying basis. Weather options are agreements

to buy or sell the value of the CDD/HDD index over the contract periods or alter-

natively can be interpreted as bets on the value of the CDD/HDD. Weather options

give the owners the right, but not the obligation, to buy or sell at a specified strike

level the specified weather index. A tradable weather derivative contract specifies

six attributes: the contract type, the contract period, the underlying index, the

contract city where the official temperature will be measured, the strike level, and

the tick size (i.e., payoff in dollars per index unit). On the CME, for instance, the

value of a degree day index, called a tick size, is $20. The contract period should

be specified as a calendar month or seasonal strip from November to March for the

HDD and May to September for the CDD.
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3 Model

3.1 Assumptions and Notation

We assume that our economy is a frictionless endowment economy in a single-period

planning horizon. It is implicit in the assumption of an endowment economy that the

issuer of the weather derivative(underwriter) will supply a fixed number of deriva-

tives at time 0 that will subsequently be traded in the market. Hence the price

of the weather derivative is determined by the initial number of instruments issued

and by the market demand. This aspect distinguishes our model from an actu-

arial based approach where an insurer issue as many contracts as demanded at a

price determined by the issuer based on a stochastic model of temperature risk. In

addition to the issuer who is typically a financial entity, our economy consists of

weather-sensitive industries whose output is a commodity for which there is a liquid

derivatives market (e.g., electricity, gas, wheat, etc.), We also assume that there are

weather sensitive industries with no liquid derivative market for their output (e.g.,

tourism, ski resorts, etc.). The economy is closed in the sense that all the supply and

demand for weather derivatives comes from the parties described above. We further

assume that none of the market participants is involved in speculative trades of

commodity derivatives other than the commodity specific to their industry, thus, all

hedging activities by parties involve derivatives of the commodity they produce(or

consume) if available, and weather derivatives. We assume that all market partici-

pants are expected utility maximizers. We further assume that retail prices for all

commodities are stable while wholesale prices and demand quantities are volatile

and correlated with weather. This is definitely true in the energy industry, which is

the primary focus of this paper. In the electric power industry, for instance, electric

utilities have an obligation to serve all their customers’ load at fixed regulated retail

prices while they procure the power in a competitive wholesale market where spot

prices are highly volatile. Thus, the buyers’ profit function is given by (retail price

- wholesale spot price)×demand.3 From the profit function we can see that each

company faces not only spot price risk but also volumetric risk. We assume that

the spot price, the demand, and temperature are all correlated.

3In general, some buyers can have a ’news vendor’ type profit function, characterized in terms
of shortage cost, inventory cost and salvage values for the leftover stocks. But in this paper, we
will not consider a ’news vendor’ type profit function.
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In the stylized economy described above, there exist three types of financial

assets; a risk free bond, a plain-vanilla weather call option with a strike K, and

commodity derivatives that include forward contracts and European call and put

options for which the underlying asset is the commodity spot price. All the financial

instruments mature at time 1 at which point the physical commodity is delivered

and paid for. Each agent can trade financial assets at time 0 to hedge its net

revenue risks so as to maximize the expected utility at maturity. In other words,

each trading party is faced with the problem of maximizing the expected utility of

terminal wealth subject to a budget constraint at time 0. The issuer decides on the

number of the weather call option supplied into the market so as to maximize her

expected utility of terminal wealth at time 1.

Under the multi-commodity economy, the weather derivatives create two social

welfare enhancing effects, a risk hedging effect and a risk sharing effect. When

considering a single-commodity case, only the hedging effect is relevant and it can

be measured by the certain equivalent difference of the maximized utility with and

without weather derivative. The risk sharing effect reflects possible diversification

of weather risk across industries with different weather dependence (e.g. some in-

dustries may benefit from high temperature while others may be adversely affected).

Such risk sharing effect can be measured by the certain equivalent difference of the

maximized utility between the multi-commodity and a single-commodity economy.

In section 4 we will provide a general form of an equilibrium pricing model and

numerical examples illustrating the results of our analysis.

Denote a probability space triplet by (Ω,F , P). Also let Q denote a risk-neutral

probability measure.

◦ Notation

• i ∈ {0, 1, . . . ,m} : indices 0 to m-1 represent buyers where u buyers have a liquid
derivatives market and v buyers don’t and index m represents the issuer of weather
derivatives

• Ui(·) : The utility function of type i industry where Ui : R →R is smooth, increasing
and strictly concave on R and has a continuous derivative U ′(·) on R

• Πi,n : The profit function of the type i at time n

• PR
i : The unit retail price of type i industry

• Pi : The unit spot price of type i at terminal time

• P ′

i = PR
i − Pi : The marginal profit of selling a type i commodity
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• Di : The random demand for type i at terminal time

• Bn = (1 + r)nB0 : The riskless bond price at time n, where r is the interest rate and
B0 = 1

• Wn : The weather derivative price

• W 1

i,n : The weather derivative price at time n in a type i industry economy

• Ii(Di, Pi): the income function of type i industry at terminal time

• xi,n(Pi): The portfolio payoff consisting of a risk-free bond, forwards, and call and
put options with various strikes in a type i industry

• αi,n: A portfolio position of type i industry for the weather derivative at time n

• J(Πi,n) : The maximized expected utility of type i industry at time n

• J1

wd(Πi,n) : The maximized expected utility of type i industry at time n in a single-
commodity economy with the weather derivative and commodity derivatives

• J1

wn(Πi,n) : The maximized expected utility of type i industry at time n in a single-
commodity economy with the weather derivative and without commodity derivatives

• J1

nd(Πi,n) : The maximized expected utility of type i industry at time n in a single-
commodity economy without the weather derivative and with commodity derivatives

• J1

nn(Πi,n) : The maximized expected utility of type i industry at time n in a single-
commodity economy without the weather derivative and commodity derivatives

• HEi,n : The hedging effect for the type i industry at time n

• RSi,n : The risk sharing effect for the type i industry at time n

3.2 Multi-Commodity Economy

3.2.1 Utility Maximization Problem of Buyers with a Liquid Derivatives

Market

We consider the utility maximization problem of buyers that have a liquid commod-

ity derivatives market. For example, electricity and natural gas industry have liquid

futures and options markets of which underlying asset is the spot price of electricity

or natural gas. The buyer’s profit function at time 1 is

Πi,1 = Ii(Di, Pi) + xi,1(Pi) + αi,1W1 (4)

where xi,1(Pi) represents the optimal payoff of the commodity portfolio which is

the function of the commodity price Pi. The corresponding utility maximization
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problem of buyers at time 0 is

max
{xi,1,αi,1}

E0[Ui(Πi,1)]

s.t. EQ[
xi,1(Pi)

B1
] + αi,1W0 = 0, ∀i = 1, 2, . . . , u (5)

where the constraint means that it costs zero to construct the portfolio with a

commodity derivatives payoff xi,1(Pi) and weather derivatives payoff αi,1W0. The

expected discounted portfolio values under a risk-neutral probability measure Q is

the price of the commodity derivatives’ portfolio. Note that xi,1(Pi) is a decision

variable. For each realization p of the random price Pi we will find the optimal

payoff function x(p) by solving the above maximization problem (5).

[Carr and Madan, 2001] show that any twice continuously differentiable func-

tion, f(S), of the terminal stock price S can be replicated by a unique initial position

of f(S0) − f ′(S0)S0 unit discount bonds, f ′(S0) shares, and f ′′(K)dK out-of-the-

money options of all strikes K:

f(S) = [f(S0) − f ′(S0)S0] + f ′(S0)S +

∫ S0

0
f ′′(K)(K − S)+dK

+

∫ ∞

S0

f ′′(K)(S − K)+dK (6)

Using the result (6) the optimal payoff function x(Pi) can be rewritten as:

x(Pi) = x(F ) · 1 − x′(F )(Pi − F ) +

∫ F

0
x′′(K)(K − Pi)

+dK

+

∫ ∞

F

x′′(K)(Pi − K)+dK (7)

where F denotes the forward price at time 0. Because 1, (Pi − F ), (K − Pi)
+, and

(Pi − K)+ represent the payoff of the bond, forward contracts, and European put

and call options respectively, the equation (7) shows that the optimal payoff x(Pi)

can be replicated by x(F ) units of the risk-free bonds, x′(F ) units of forwards,

x′′(K)dK units of European put options with strike K for all K < F , and x′′(K)dK

units of European call options with strike K for all K > F . Since in reality there

are no derivatives with continuous strikes, we need to approximate the replication

by existing derivatives. [Oum et al., 2006] suggest one possible way to replicate the

optimal payoff by approximating the option positions x′′(K)dK to the mean of two
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available strike prices. Determining the best discrete approximation to our contin-

uous optimal portfolio is out of the scope of this paper and will not be elaborated

any further.

Back to our constrained maximization problem(5), the corresponding Lagrangian

function is

L(xi,1(Pi), αi,1, λi) = E0[Ui(Πi,1)] − λi(E
Q
0 [

xi,1(Pi)

B1
] + αi,1W0)

=

∫ ∞

−∞
E0[Ui(Πi,1)|Pi = p]fi(p)dp − λi(

1

B1

∫ ∞

−∞
xi,1(p)gi(p)dp + αi,1W0) (8)

where fi(p) is a marginal probability density function of commodity spot price Pi

under the real probability measure P and gi(p) is a risk-neutral probability density

function of Pi. If the commodity market is incomplete there may exist infinitely

many risk-neutral probability measures. The ratio gi(p)
fi(p) is a Radon-Nicodym deriva-

tives for the type i commodity and satisfies E[ gi(p)
fi(p) ] = 1. One of the decision vari-

ables, xi,1(Pi), is a function of Pi and we need the Euler equation for the functional

derivatives. Taking partial derivative with respect to xi,1(Pi), αi,1, and λi gives us

the first order necessary conditions as

∂L

∂xi,1(p)
= E0[U

′
i(Πi,1)

∂Πi,1

∂xi,1(p)
|p]fi(p) − λi

gi(p)

B1
= 0 (9)

∂L

∂αi,1
= E0[U

′
i(Πi,1)

∂Πi,1

∂αi,1
] − λiW0 = 0 (10)

E
Q
0 [

xi,1(P )

B1
] + αi,1W0 = 0 ∀i = 1, 2 . . . , u (11)

Note that the first order conditions are sufficient for optimality because the utility

function is assumed to satisfy U ′(·) > 0 and U ′′(·) < 0. Moreover under the as-

sumption E0[|Ui(·)|] < ∞ the partial derivative and the expectation operator are

interchangeable. By solving the above three equations with three unknowns we can

determine the optimal portfolio choices, xi,1(Pi) and α∗
i,1, i.e., the structure of the

optimal derivatives portfolio payoff of type i industry, and the quantity of weather

derivatives that should be purchased at time 0 in order to maximize the expected

utility. The optimal α∗
i,1 is a function of an equilibrium price W0 and will be used

as a demand function for the weather derivative.

11



3.2.2 Utility Maximization Problem of Buyers without a Liquid Deriva-

tives Market

If a type i industry does not have a liquid derivatives market, a risk-free bond and

the weather derivative are the only available financial assets for hedging volumetric

and price risk. Then the profit function is of the form

Πj,1 = Ij(Dj , Pj) + αj,1W1 + βj,1B1 (12)

where βj,1 is the amount of money invested in a risk-free bond. The corresponding

utility maximization problem of buyers at time 0 is;

max
{αj,1,βj,1}

E0[Uj(Πj,1)]

s.t. αj,1W0 + βj,1B0 = 0, j = 1, 2, . . . , v (13)

where the constraint implies that the portfolio with αj,1 and βj,1 has zero cost at time

zero. The constraint can be rewritten as βj,1 = −αj,1W0

B0
and can be substituted into

the profit function (12). Then we have the unconstrained maximization problem:

max
{αj,1}

E0[Uj(Πj,1)] (14)

where Πj,1 = Ij(Dj , Pj)+αj,1(W1−W0B1). Since there is only one decision variable

αj,1 the optimality condition will be

∂E0[Uj(Πj,1)]

∂αj,1
= 0 (15)

From the above optimality condition (15) we can find the optimal quantity of

weather derivatives in the case of no commodity derivatives market and the de-

rived quantity will be regarded as the demand function for weather derivatives with

an argument W0.

3.2.3 Utility Maximization Problem of an Issuer

Now we consider the issuer’s or underwriter’s problem. The issuer is assumed to

be a purely financial firm that specializes in weather derivatives and balances its

budget by trading a risk-free bond, but it takes no positions in any commodity

derivatives. At time 0 the underwriter will issue the weather derivatives and receive
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a price W0. At time 1 the issuer will pay the realized payoff W1 for the issued

weather derivatives. Consequently the issuer’s profit function at time 1 is

Πm,1 = αm,1(W0 ∗ B1 − W1) (16)

The corresponding problem of the issuer is as follows.

max
{αm,1}

E0[Um(Πm,1)] (17)

The first order condition is

∂E0[Um(Πm,1)]

∂αm,1
= 0 (18)

The issuer can determine the quantity of weather derivatives that will be supplied

in this economy. Only this number of the weather derivatives, α∗
m,1, will prevail in

the market.

3.2.4 Equilibrium Price

We next derive an equilibrium pricing formula by applying the market clearing

condition. The market clearing condition means the aggregate demand should be

equal to the aggregate supply and can be graphically interpreted as the intersection

of the demand and supply curve. The market clearing condition is given by

u
∑

i=1

α∗
i,1(W0) +

v
∑

j=1

α∗
j,1(W0) = α∗

m,1(W0) (19)

From the above equation we can derive the equilibrium price for the weather deriva-

tive. Then, the optimal choices can be expressed as real numbers and the maximized

expected utility of the buyer i at time 1 with a liquid derivatives market, denoted

by Jwd(Πi,1), is

Jwd(Πi,1) = E[Ui(Ii(Di, Pi + x∗
i,1(Pi) + α∗

i,1W1)] ∀i = 1, 2, . . . , u (20)

The certain equivalent, denoted by CEwd, will be

CEwd = U−1
i (Jwd(Πi,1)) (21)

If there is no liquid derivatives market the maximized utility and its certain equiv-

alents are written as

Jwn(Πj,1) = E[Uj(Ij(Dj , Pj) + α∗
j,1W1 + β∗

j,1B1)] ∀j = 1, 2, . . . , v (22)

CEwn = U−1
j (Jwn(Πj,1)) (23)
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3.3 Single-Commodity Economy

In this section we consider a single-commodity economy because we want to evaluate

the effectiveness of weather derivative in mitigating, transferring, and diversifying

(via risk sharing) market risk. One possible measurement of the risk hedging and

sharing effects is the certain equivalent difference of the uncertain outcomes, that

are measured in dollars. To measure the hedging effect we need to examine two

cases; with and without weather derivatives. Note that in this case there is no

risk sharing through cross-commodity diversification. We still consider, however,

two types of buyers; one with a liquid commodity derivatives market and the other

without. Since they have different forms of the profit functions we need to formulate

this case separately. We need to consider four cases reflecting combinations of two

factors, existence of the weather derivative and the presence of a liquid derivatives

market.

3.3.1 Utility Maximization Problem of Buyers with a Liquid Derivatives

Market

In the case that there is a weather derivative in the type i commodity economy the

corresponding problems of the buyer and the issuer are exactly the same as the case

of the multi-commodity economy case resulting in the same optimality conditions

(9) and (18) for the buyer and the issuer respectively. The only difference between

a single and multi-commodity economy is the market clearing condition since a

single-commodity economy has one buyer and one issuer. Instead of the aggregated

demand, we use a single buyer’s demand function in the market clearing condition.

α∗
i,1(W

1
i,0) = α∗

m,1(W
1
i,0) ∀i = 1, 2, . . . , u (24)

This condition gives us the equilibrium price for a single-commodity economy. The

maximized expected utility of the buyer with the weather derivatives in a single-

commodity economy is of the form

J1
wd(Πi,1) = E0[Ui(I(Di, Pi) + x∗

i,1(Pi) + α∗
i,1W

1
i,1)] (25)

The corresponding certain equivalent is CE1
wd = U−1

i (J1
wd(Πi,1)).

If the weather derivative is not available and only a risk-free bond and type i

commodity derivatives are traded, the profit function of the buyers will be changed.
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The buyers will hedge risk only via the type i commodity derivatives and a risk-free

bond. The issuer does not have any role in this case. The buyer’s profit function is

of the form

Πi,1 = I(Di, Pi) + xi,1(Pi) (26)

The corresponding maximization problem is

max
{xi,1(Pi)}

E0[Ui(Πi,1)]

s.t. EQ[xi,1(Pi)] = 0 ∀i = 1, 2, . . . , u (27)

The above problem (27) is solved by [Oum et al., 2006] under the CARA and the

mean-variance utility function. The optimality condition can be obtained by defining

the Lagrangian function and taking derivatives with respect to xi,1(P ) and λi.

∂L

∂xi,1(P )
= E0[U

′
i(Πi,1)

∂Πi,1

∂xi,1(P )
|p]fi(p) − λigi(p) = 0 (28)

E
Q
0 [xi,1(P )] = 0 i = 1, 2 . . . , u (29)

After solving the above optimality conditions we can find the maximized utility and

the certain equivalent as

J1
nd(Πi,1) = E0[Ui(Ii(Di, Pi) + x∗

i,1(Pi))] (30)

CE1
nd = U−1

i (J1
nd(Πi,1)) (31)

3.3.2 Utility Maximization Problem without a Liquid Derivatives Mar-

ket

If weather derivative are available but there is no market for type j commodity

derivatives, the optimality condition is the same as (15). After applying the market

clearing condition with a single, not aggregated, demand and supply we can find a

new equilibrium price in this single-commodity economy and the maximized utility

has the form of

J1
wn(Πj,1) = E0[Uj(Ij(Dj , Pj) + α∗

j,1W
1
1 + β∗

j,1B1)] ∀j = 1, 2, . . . , v (32)

The corresponding certain equivalent is

CEwn = U−1
j (J1

wn(Πj,1)) (33)
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If there are no weather derivative and liquid derivatives market, the buyers are

exposed to all the risk. Then the buyer’s profit function is Πj,1 = Ij(Dj , Pj) and

the expected utility and the certain equivalent are written as

J1
nn(Πj,1) = E0[Uj(Πj,1)] ∀j = 1, 2, . . . , v (34)

CE1
nn = U−1

j (J1
nn(Πj,1)) (35)

3.4 Hedging and Risk Sharing Effects

In this section we evaluate the hedging and the risk sharing effect. As mentioned be-

fore one role of the weather derivative is to hedge the volumetric risks of the buyers.

The hedging effect can be measured by subtracting the certain equivalent without

the weather derivative from the certain equivalent with the weather derivative in

a single-commodity economy. Thus, with a liquid derivatives market the hedging

effect is given by

HEi,1 = CE1
wd − CE1

nd ∀i = 1, . . . , u (36)

Without a liquid derivatives market the hedging effect is given by

HEj,1 = CE1
wn − CE1

nn ∀j = 1, . . . , v (37)

The risk sharing effect exists only in the multi-commodity economy with weather

derivatives. By holding weather derivatives buyers can increase their expected utili-

ties. The difference between the certain equivalent in a single and multi-commodity

economy will represent the risk sharing effect. With a liquid commodity derivatives

market the risk sharing effect is

RSi,1 = CEwd − CE1
wd ∀i = 1, . . . , u (38)

Without a liquid commodity derivatives market the risk sharing effect is

RSj,1 = CEwn − CE1
wn ∀j = 1, . . . , v (39)

4 Mean-Variance Utility Case

In this section we specialize the general model described above to the case where all

market participants have mean variance utility functions with possibly different risk
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aversion coefficients, i.e. U(Πi) = E[Πi]− νi

2 V ar(Πi) where νi denotes the risk aver-

sion coefficient of the type i buyer. The utility value U(Πi) can be interpreted as the

certain equivalent of the risky outcome Πi. Under the mean-variance utility function

we can, therefore, directly use utility differences to measure the risk hedging and

sharing effects. Portfolio choices based on the mean-variance preference are widely

accepted in financial theory to analyze decisions under risk. [Kroll et al., 1984] show

that the mean-variance efficient portfolio is a good approximation of the optimized

portfolio under other forms of utility functions.

4.1 Multi-Commodity Economy

Under the mean variance utility the Lagrangian function corresponding to problem

(5) is given by

L(xi,1(Pi), αi,1) = µIi
+ µxi,1 + αi,1µW1 −

νi

2
(σ2

Ii
+ σ2

xi,1
+ α2

i,1σ
2
W1

+2(σIixi,1 + αi,1σxi,1W1 + αi,1σW1Ii
)) − λi(E

Q[
xi,1(Pi)

B1
] + αi,1W0) (40)

If we take the point-wise partial derivative with respect to xi,1(p) and the partial

derivatives with respect to αi,1 and λi we have the following optimality conditions.

∂L

∂xi,1(p)
= fi(p)(1 − νi(xi,1(p) − E[xi,1(Pi)] + E[Ii|p] − µIi

+αi,1(E[W1|p] − µW1))) − λi
gi(p)

B1
(41)

∂L

∂αi,1
= µW1 − νi(σ

2
W1

αi,1 + σxi,1W1 + σW1Ii
) − λiW0 = 0 (42)

E
Q
0 [

xi,1(P )

B1
] + αi,1W0 = 0 ∀i = 1, 2, . . . , u (43)

By solving the above three equations we can obtain the following result.

Proposition 1 The optimal payoff function x∗
i,1(Pi) of the commodity derivatives

portfolio is

x∗
i,1(Pi) =

1

νi
(
EQ[ gi(Pi)

fi(Pi)
] − gi(Pi)

fi(Pi)

E[ gi(Pi)
fi(Pi)

]
) − (E[Ii|Pi] − EQ[E[Ii|Pi]])

+EQ[x∗
i,1(Pi)](1 +

1

W0B1
(E[W1|Pi] − EQ[E[W1|Pi]])) (44)
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where

EQ[X∗
i,1(Pi)] =

B1W0

E[E[W1|Pi]W1] − µ2
W1

− σ2
W1

( 1

νi
(
E[ gi(Pi)

fi(Pi)
W1]

E[ gi(Pi)
fi(Pi)

]
− B1W0) − (µIi

µW1 − E[E[Ii|Pi]W1]) − σW1Ii

)

(45)

Finally, we can find the optimal quantity of weather derivative from the optimality

condition (43) as

α∗
i,1 =

1
νi

(
E[

gi(Pi)

fi(Pi)
W1]

E[
gi(Pi)

fi(Pi)
]

− B1W0) − (µIi
µW1 − E[E[Ii|Pi]W1]) − σW1Ii

µ2
W1

+ σ2
W1

− E[E[W1|Pi]W1]
(46)

The proof is provided in the Appendix A. Note that α∗
i,1 is a linear function of W0.

If there is no commodity derivatives market in the type j commodity we have

the following optimal choice from the equation (15).

α∗
j,1 =

µW1 − B1W0 − νjσIjW1

νjσ
2
W1

∀j = 1, . . . , v (47)

Again α∗
j,1 is linear in W0.

Next the issuer’s problem (17) under the mean-variance case becomes;

max
αm,1

αm,1(B1W0 − µW1) −
νm

2
σ2

W1
α2

m,1 (48)

From the optimality condition (18), the number of the weather derivative supplied

in this economy will be

α∗
m,1 =

B1W0 − µW1

νmσ2
W1

(49)

Here the supply function for weather derivative is also linear in W0. Therefore, in

the mean-variance utility function, the demand and supply of the weather derivative

are all linear. The intersection of the aggregate demand and the supply function will

clear the weather derivative market. In other words, the equilibrium price of the

weather derivative can be calculated from the following market clearing condition.

u
∑

i=1

1
νi

(
E[

gi(Pi)

fi(Pi)
W1]

E[
gi(Pi)

fi(Pi)
]

− B1W0) − (µIi
µW1 − E[E[Ii|Pi]W1]) − σW1Ii

µ2
W1

+ σ2
W1

− E[E[W1|Pi]W1]

+
v

∑

j=1

µW1 − B1W0 − νjσIjW1

νjσ
2
W1

=
B1W0 − µW1

νmσ2
W1

(50)
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From the above equation, the equilibrium price of the weather derivative can be

obtained if we specify a probability density function of the spot price Pi for the

commodity i under P and Q and the income structure of type i industry. As a

result, the maximized utility of type i buyer is

Jwd(Πi,1) = Ui(Ii(Di, Pi) + x∗
i,1(Pi) + α∗

i,1W1) ∀i = 1, . . . , u (51)

The maximized utility of type j buyer without a liquid commodity derivatives market

is

Jwn(Πj,1) = Uj(Ij(Dj , Pj) + α∗
j,1W1 + β∗

j,1B1) ∀j = 1, . . . , v (52)

4.2 Single-Commodity Economy

In a single-commodity economy with weather derivatives and a liquid commodity

derivatives market there is one buyer and one issuer. The revised market clearing

condition under the mean-variance utility is

1
νi

(
E[

gi(Pi)

fi(Pi)
W1]

E[
gi(Pi)

fi(Pi)
]

− B1W0) − (µIi
µW1 − E[E[Ii|Pi]W1]) − σW1Ii

µ2
W1

+ σ2
W1

− E[E[W1|Pi]W1]

=
B1W0 − µW1

νmσ2
W1

(53)

The maximized utility in this case will be

J1
wd(Πi,1) = Ui(I(Di, Pi) + x∗

i,1(Pi) + α∗
i,1W1) ∀i = 1, 2, . . . , u (54)

If there is a weather derivative but no commodity derivatives market, the market

clearing condition is

µW1 − B1W0 − νjσIjW1

νjσ
2
W1

=
B1W0 − µW1

νmσ2
W1

(55)

And the maximized utility is given by

J1
wn(Πj,1) = Uj(I(Dj , Pj) + α∗

j,1W1 + β∗
j,1B1) ∀j = 1, 2, . . . , v (56)

In a single-commodity economy without weather derivatives and with a liquid

derivatives market the optimal solution to the type i buyers is provided in the

following proposition.
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Proposition 2 The optimal payoff function x∗
i,1(p) in case of no weather derivative

has the form of

x∗
i,1(p) =

1

νi
(EQ[

gi(p)

fi(p)
] − gi(p)

fi(p)
) + EQ[E[Ii,1|p]] − E[Ii,1|p] (57)

The proof of Proposition 2 is provided in the Appendix B. Then the buyer’s maxi-

mized utility is given by

J1
nd(Πi,1) = Ui(Ii(Di, Pi) + x∗

i,1(Pi)) ∀i = 1, 2, . . . , u (58)

If there are no weather derivative and liquid commodity derivatives market the

buyer’s maximized utility is the form of

J1
nn(Πj,1) = Uj(Ij(Dj , Pj)) ∀j = 1, 2, . . . , v (59)

Now we can measure the hedging effect (36) and (37) and the risk sharing effect (38)

and (39) under the mean-variance preference. In next section, we calculate these

effects numerically for specific data.

5 Numerical Examples

In this section we illustrate the equilibrium pricing model and the risk hedging and

sharing effects with a numerical examples based on the mean variance utility func-

tion. We apply our pricing model to a plain-vanilla weather call option with a strike

of 85◦F , which may be in the portfolio during a hot summer day. However, this

example can be extended to CDD/HDD indexed call or put options if we specify

the probability density functions of CDD/HDD indices during the contract period.

We assume that there are 5 market participants, an issuer and the four types of the

buyers. Each buyer’s commodity demand and spot price are positively or negatively

correlated with temperature and they may have a liquid derivatives market. For con-

venience we label the four buyers as buyer 1 trough buyer 4. Buyer 1, which may be

an electricity distribution company, faces positive correlation among demand, spot

price, and temperature and it can trade commodity derivatives in the liquid deriva-

tives market. Demand faced by buyer 2 is negatively correlated with temperature

and there are tradable commodity derivatives. Buyer 3 faces a positive correlation

between demand and temperature but does not have a commodity derivatives mar-

ket. Buyer 4 faces a negative correlation between demand and temperature and has
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no derivatives market to trade in. All the buyer types have the same form of the

income function which reflects selling at a fixed retail price and buying in a volatile

wholesale price (a typical situation for energy utilities in restructured electricity or

gas markets), i.e. Ii(Di, Pi) = (PR
i − Pi)Di. We also assume that P = Q in each

commodity market. This assumption has been justified in the Nordic electricity

market by [Audet et al., 2004]. Under this assumption, we can simplify the optimal

quantities for the weather derivative defined by the optimality condition (46) as

α∗
i,1 =

1
νi

(µW1 − B1W0) − (µIi
µW1 − E[E[Ii|Pi]W1]) − σW1Ii

µ2
W1

+ σ2
W1

− E[E[W1|Pi]W1]
(60)

Our previous result (44) for the optimal portfolio payoff of type i commodity can

be simplified as

x∗
i,1(Pi) = µIi

− E[Ii|Pi] − αi,1W0B1(1 +
1

W0B1
(E[W1|Pi] − µW1)) (61)

If commodity derivatives are not available, the optimal choices of a weather call

option is the same as (47) since we use a risk-neutral probability measure Q in a

commodity derivatives market. Then the market clearing condition can be written

as

2
∑

i=1

1
νi

(µW1 − B1W0) − (µIi
µW1 − E[E[Ii|Pi]W1]) − σW1Ii

µ2
W1

+ σ2
W1

− E[E[W1|Pi]W1]

+
2

∑

j=1

µW1 − B1W0 − νjσIjW1

νjσ
2
W1

=
B1W0 − µW1

νmσ2
W1

(62)

which results in the equilibrium price as

W0 =

∑2
i=1

∆i

Γi
+

∑2
j=1

Λj

νjσ2
W1

+
µW1

νmσ2
W1

B1(
1

νmσ2
W1

+
∑2

i=1
1

νiΓi
+

∑2
j=1

1
νjσ2

W1

)
(63)

where ∆i = 1
νi

µW1−(µIi
µW1−E[E[Ii|Pi]W1])−σW1Ii

, Γi = µ2
W1

+σ2
W1

−E[E[W1|Pi]W1]

and Λj = µW1 − νjσIjW1 .

We assumed that temperature T follows a normal distribution with mean µT and

variance σ2
T . Demand Di and the spot price Pi of the type i commodity are as-

sumed to be log-normally distributed and correlated with temperature T. To price

the weather call option, we use a Monte-Carlo simulation which enables us to numer-

ically calculate the various expectation, conditional expectation, and covariances.
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T Di Pi

T σ2
T a1σT e0.5(a2

i +b2i )+ci diσT e0.5(d2
i +e2

i +f2
i )+gi

Di · e2ci+a2
i +b2i (ea2

i +b2i − 1) eci+gi+0.5(a2
i +b2i +d2

i +e2
i +f2

i )(eaidi+biei − 1)

Pi · · e2gi+d2
i +e2

i +f2
i (ed2

i +e2
i +f2

i − 1)

Table 1: Covariance Matrix

We define temperature, demand, and the spot price as

T = µT + σT Z (64)

Di = eaiZ+biZi,1+ci (65)

Pi = ediZ+eiZi,1+fiZi,2+gi ∀i = 1, 2, 3, 4 (66)

where ai, bi, ci, di, ei, fi, and gi are constant and Z, Zi,1, and Zi,2 are independent

standard normal random variables. We then have the mean vector of demand and

the spot price as

(µDi
, µPi

) = (eci+0.5(a2
i +b2i ), egi+0.5(d2

i +e2
i +f2

i )) (67)

and the covariance matrix Σ as shown in Table 1. Because we have 7 parameters

and 7 equations from the mean vector and the covariance matrix for each i, we can

determine the parameters ai, bi, . . . , gi so that random variables T, Di, and Pi have

the specified correlations. Note that our equilibrium pricing formula (61) includes

the conditional expectations, E[Ii|Pi] and E[Wi|Pi]. The distribution of the random

variable E[Ii|Pi] can be found from

E[Ii|Pi = p] = (PR
i − p)E[Di|Pi = p]

lnDi|Pi ∼ N
(

ci + ρi

√

a2
i + b2

i

d2
i + e2

i + f2
(lnPi − gi), (a

2
i + b2

i )(1 − ρ2
i )

)

(68)

where ρi = aidi+biei√
(a2

i +b2i )(d2
i +e2

i +f2
i )

. In addition in order to get E[Wi|Pi] we need to find

the distribution of the random variable T |Pi and then we can estimate E[Wi|Pi] by

Monte-Carlo simulation. The distribution of T |Pi is known as

T |Pi ∼ N
(

µT +
σT di(lnPi − gi)

d2
i + e2

i + f2
i

,
σ2

T (e2
i + f2

i )

d2
i + e2

i + f2
i

)

(69)

In this example, we vary the correlation coefficient corresponding to buyer 1, denoted

by ρ with temperature. All other parameters are fixed. In addition temperature T
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(a) Buyer 1

T D1 P1

T 1 vary 0.3
D1 vary 1 0.5
P1 0.3 0.5 1

(b) Buyer 2

T D2 P2

T 1 -0.6 -0.2
D2 -0.6 1 0.4
P2 -0.2 0.4 1

(c) Buyer 3

T D2 P2

T 1 0.7 0.3
D3 0.7 1 0.3
P3 0.3 0.3 1

(d) Buyer 4

T D2 P2

T 1 -0.6 -0.2
D4 -0.6 1 0.3
P4 -0.2 0.3 1

Table 2: Correlation Coefficient of the Buyers

is assumed to be N(80,25). The risk aversion coefficients of all buyers are equal to

0.1. The issuer’s risk aversion coefficient is assumed to be 0.01. Table 2 shows the

correlation coefficient corresponding to the four buyers among temperature, demand,

and spot price. Other market parameters for buyer 1 which represents an electricity

distribution company are estimated from Energy Information Administration web

sites.4 Demand and spot price are 9.474×106MWh and $99.47/MWh. Finally, the

variances of demand and spot price of the buyer 1 are 3 and 2 respectively. All other

variances of the buyer 2,3, and 4 are assumed to be 2.

Figure 1 shows the equilibrium price and the optimal quantities of weather call

options of the four buyers. In Figure 1(a) the actuarial price is defined as the

discounted expected value of the weather call option under the real world probability

measure P. Figure 1(b) shows that the buyer 1 and 4 short and the buyer 2 and 3

long the weather call option.

As we expect from equation (62) Figure 2 shows the linear aggregated demand

and supply curves under the mean-variance utility function with correlation 0.8.

The risk hedging and the risk sharing effects corresponding to each buyer are

shown in Figure 3. Figure 3 demonstrates that how much the buyers can increase

their maximum utility by employing the weather call option. The risk hedging and

sharing effects for buyer 1 and 2 are relatively small but more significant for buyers 3

and 4. This result is due to the existence of commodity derivatives. Because buyers

1 and 2 can construct portfolios consisting of commodity derivatives with continuous

4www.eia.doe.gov
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Figure 3: Hedging and Risk Sharing Effects

strike prices and the weather call options are only one part of their hedging portfolios,

the effect of the weather call option for buyers 1 and 2 is much smaller than the

corresponding effect for buyers 3 and 4 that must rely only on weather call option

in order to hedge risk. Importantly, if the strike prices of commodity options are

discrete with only few number of the strike prices, which is more realistic, the risk

hedging and sharing effects attributable to weather derivatives are expected to be

higher.

The utility improvement shown by Figure 3 is caused by reducing the vari-

ance of demand and spot price via the weather call option and other commodity

derivatives(if available) and sharing the volumetric risk with other market partic-

ipants. This risk(or variance) reduction can be shown by the probability density

functions(p.d.f.) of the profit function Πi before and after hedging risk. Figure 4

illustrates the p.d.f. of the buyers 1 and 2’s profit functions for three cases ; expo-

sure to all risk, after hedging with commodity derivatives only, and after hedging

with commodity derivatives and the weather call option. The p.d.f. before hedging

is widely spread, which means that the buyer is exposed to high net revenue risk

but after including commodity derivatives the risk is greatly reduced. However, the

p.d.f. of the profit function after including commodity derivatives and the weather

call option is very similar to the p.d.f. of the profit function with commodity deriva-

tives only.

Figure 5 shows the p.d.f. of the profit function for buyers 3 and 4 before and
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Figure 4: P.D.F. of Buyer 1 and 2’s Profit Function (ρ1 = 0.6)

after hedging. By employing the weather call option buyers 3 and 4 can reduce the

variance of the profit function, which improve their mean-variance utility value.
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Figure 5: P.D.F. of the Buyer 3 and 4’s Profit Function (ρ1 = 0.6)

Table 3 shows the variance of the profit function when the buyer 1’s correlation

to temperature is 0.6.

Finally, Figure 6 illustrates the optimal payoff of the portfolio with commodity

derivatives for buyers 1 and 2 when the correlation ρ between temperature T and

demand D1 is 0.3 and 0.6. Because we change the correlation ρ and not the corre-

lation between temperature and spot price the resulting graphs look very similar.
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Buyer 1 Buyer 2 Buyer 3 Buyer 4

Before Hedging 170.0013 164.4937 192.6060 197.4552
Including Comm.Der. 3.9816 2.5077
Including Wea.Der. 126.3753 175.2812

Including Comm.Der. and Wea. Der. 3.9410 2.4158

Table 3: Variance of the Profit Function
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Figure 6: Optimal Payoff x∗(P ) of the Commodity Derivatives Portfolio

6 Conclusion

Many industries are directly or indirectly exposed to weather risk. Although catas-

trophic events such as storms and hurricanes cause serious damage to most indus-

tries, even less extreme weather conditions can significantly affect the revenue of

weather-sensitive industries. Weather derivatives provide an effective way to miti-

gate financial losses due to weather. However, there is no standard pricing model

because of the market incompleteness.

In this paper we propose an equilibrium pricing model in a multi-commodity

setting that is driven by demand for weather derivatives which is derived from

hedging and risk diversification activities in weather sensitive industries. As part of

our analysis we measure the risk hedging and sharing effects of the weather derivative

both of which contribute to increasing the expected utility of risk averse agents

that include these instruments in their hedging portfolios. To price the weather
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derivative we assume that there are buyers and an issuer in a closed and frictionless

endowment economy and all of them are utility maximizers. By solving the utility

maximization problems of the market participants we determine the optimal demand

and supply functions for weather derivatives and obtain their equilibrium prices by

invoking a market clearing condition. In the multi-commodity economy the weather

derivative has two effects; the risk hedging effect and the risk sharing effect while

in a single-commodity economy there is only a risk hedging effect since there is no

counter-party to share risk. We measure these effects in terms of certain equivalent

differences among various cases.

Under the mean-variance utility function we were able to derive closed form ex-

pression for equilibrium prices and the measurement of the risk hedging and sharing

effects. Such expression will be useful in future empirical work that will attempt

to calibrate the model parameter to market data. Numerical examples employ-

ing Monte-Carlo simulations show the equilibrium price and optimal choices for all

available assets under various correlations between temperature and demand. In ad-

dition the numerical examples verify that weather derivative improves hedging and

risk diversification capability, especially in situations where commodity derivatives

are not available.
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APPENDIX

A Proof of Proposition 4.1: the optimal xi,1(Pi) and αi

We know that

∂E[xi,1]

∂xi,1(p)
=

∂(
∫ ∞
−∞ xi,1(p)fi(p)dp)

∂xi,1(p)
= fi(p) (70)

∂σ2
xi,1

∂xi,1(p)
=

∂(
∫ ∞
−∞ xi,1(p)2fi(p)dp − (

∫ ∞
−∞ xi,1(p)fi(p)dp)2)

∂xi,1(p)

= 2fi(p)
(

xi,1(p) −
∫ ∞

−∞
xi,1(p)fi(p)dp

)

(71)

σIixi,1 = E[Iixi,1] − E[Ii]E[xi,1]

where E[Iixi,1] =

∫ ∞

−∞
E[Iixi,1(p)|P = p]fi(p)dp

=

∫ ∞

−∞
xi,1(p)E[Ii|Pi = p]fi(p)dp (72)

σxi,1W1 = E[xi,1W1] − E[xi,1]E[W1]

where E[xi,1W1] =

∫ ∞

−∞
E[xi,1(p)W1|Pi = p]fi(p)dp

=

∫ ∞

−∞
xi,1(p)E[W1|Pi = p]fi(p)dp (73)

Combining the above results and the Lagrangian function (40), we can find the

following optimality conditions by taking partial derivatives.

∂L

∂x∗
i,1(p)

= fi(p)(1 − νi(x
∗
i,1(p) − E[x∗

i,1(Pi)] + E[Ii|p] − µIi

+α∗
i (E[W1|p] − µW1))) − λ∗

i

gi(p)

B1
= 0 (74)

∂L

∂α∗
i

= µW1 − νi(σ
2
W1

α∗
i + E[x∗

i,1(Pi)W1]

−E[x∗
i,1(Pi)]E[W1] + σW1Ii

) − λ∗
i W0 = 0 (75)

E
Q
0 [

xi,1(P )

B1
] + α∗

i,1W0 = 0 i = 0, 1 . . . , m − 1 (76)

If we substitute λi of (75) into (74) and rearrange it we obtain

x∗
i,1(p) =

1

νi

(

1 − gi(p)

fi(p)W0B1
(µW1 − νi(σ

2
W1

α∗
i + E[x∗

i,1(Pi)W1]
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−E[x∗
i,1(Pi)]E[W1] + σW1Ii

))
)

+E[X∗
i,1(Pi)] − E[Ii|p] + µIi

− αi(E[W1|p] − µW1) (77)

The above equation implies that

x∗
i,1(Pi) =

1

νi

(

1 − gi(Pi)

fi(Pi)W0B1
(µW1 − νi(σ

2
W1

αi + E[x∗
i,1(Pi)W1]

−E[x∗
i,1(Pi)]E[W1] + σW1Ii

))
)

+E[X∗
i,1(Pi)] − E[Ii|Pi] + µIi

− αi(E[W1|Pi] − µW1) (78)

Taking the expectation of (78) under P and rearranging, we have

E[x∗
i (Pi)W1] =

1

νi
(µW1 −

W0B1

E[ gi(P )
fi(P ) ]

) − αiσ
2
W1

+ E[X∗
i,1(Pi)]E[W1] − σW1Ii

(79)

Plugging (79) into (78) and rearranging give us

x∗
i,1(Pi) =

1

νi
(1 −

gi(Pi)
fi(Pi)

E[ gi(Pi)
fi(Pi)

]
) + E[x∗

i,1(Pi)] − E[Ii|Pi] + µIi

−αi(E[W1|Pi] − µW1) (80)

If we take the expectation under Q on both sides of (80) we have

EQ[x∗
i,1(Pi)] =

1

νi
(1 −

EQ[ gi(Pi)
fi(Pi)

]

E[ gi(Pi)
fi(Pi)

]
) + E[x∗

i,1(Pi)] − EQ[E[Ii|Pi]]

+µIi
− αi(E

Q[E[W1|Pi]] − µW1) (81)

Subtracting (81) from (80) to cancel out E[x∗
i,1(Pi)], plugging α∗

i of equation(76),

and rearranging give us the following.

x∗
i,1(Pi) =

1

νi
(
EQ[ gi(Pi)

fi(Pi)
] − gi(Pi)

fi(Pi)

E[ gi(Pi)
fi(Pi)

]
) − (E[Ii|Pi] − EQ[E[Ii|Pi]])

+EQ[x∗
i,1(Pi)](1 +

1

W0B1
(E[W1|Pi] − EQ[E[W1|Pi]])) (82)

Now x∗
i (Pi) is the function of EQ[x∗

i (P )]. From equation (75) we will try to find

closed form of EQ[x∗
i (P )]. If we integrate the optimality condition (74) on both

sides, we have λi = B1. As we multiply W1 on both sides of the equation (82) and
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take the expectation under P, we have

E[x∗
i,1(Pi)W1] =

1

νiE[ gi(Pi)
fi(Pi)

]

(

EQ[
gi(Pi)

fi(Pi)
]µW1 − E[

gi(Pi)

fi(Pi)
W1]

)

−(E[E[Ii|Pi]W1] − µW1E
Q[E[Ii|Pi]])

+EQ[x∗
i,1(Pi)]

(

µW1 +
1

B1W0
(E[E[W1|Pi]W1] − µW1E

Q[E[W1|Pi]])
)

(83)

Moreover, E[x∗
i,1(Pi)] can be found by taking expectation of the equation (82) and it

is the function of EQ[x∗
i (P )]. If we substitute λi = B1, equation(83), and E[x∗

i,1(Pi)]

into (75) and simplify we can find EQ[x∗
i (P )] as follows.

EQ[x∗
i,1(Pi)] =

B1W0

E[E[W1|Pi]W1] − µ2
W1

− σ2
W1

×
( 1

νi
(
E[ gi(Pi)

fi(Pi)
W1]

E[ gi(Pi)
fi(Pi)

]
− B1W0) − (µIi

µW1 − E[E[Ii|Pi]W1]) − σW1Ii

)

(84)

Note E[ gi(Pi)
fi(Pi)

] = 1 since the ratio is a Radon-Nicodym derivative for the commodity

i market. Now we can find x∗
i (P ) by plugging (84) into (82) and α∗

i = −EQ[x∗

i (P )]
B1W0

.

Q.E.D.

B Proof of Proposition 2: the optimal xi,1(Pi) in case of

no weather derivative

The Lagrangian function for the buyers hedging problem is of the form

L(xi,1(Pi)) = µIi
+ µxi,1 −

νi

2
(σ2

Ii
+ σ2

xi,1
+ 2σIixi,1) − λiE

Q[xi,1(Pi)] (85)

The first order conditions are

∂L

∂xi,1(p)
= fi(p)(1 − νi(xi,1(p) − E[xi,1(Pi)] + E[Ii|p] − µIi

)) − λigi(p) = 0 (86)

E
Q
0 [xi,1(P )] = 0 i = 1, 2, . . . , u (87)

Integrating both sides of (86) provides λi = 1 and rearranging (86) gives us

xi,1(p) =
1

νi
(1 − gi(p)

fi(p)
) + E[xi,1(Pi)] − E[Ii,1|p] + µIi

(88)

Taking the expectation under Q we have

EQ[xi,1(Pi)] =
1

νi
(1 − EQ[

gi(Pi)

fi(Pi)
]) + E[xi,1(Pi)] − EQ[E[Ii,1|Pi]] + µIi

= 0 (89)
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After rearranging the equation (89) we have

E[xi,1(Pi)] = EQ[E[Ii,1|p]] − µIi
− 1

νi

(

1 − EQ[
gi(p)

fi(p)
]
)

(90)

If we plug (90) into (88) we obtain the optimal x∗
i,1(Pi) given in (57). Q.E.D.
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