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Abstract—We propose a successive linear programming (SLP)
approach to solve the alternating current optimal power flow
(ACOPF) problem, which we refer to as the SLP IV-ACOPF
algorithm. Our goal is to develop an ACOPF linearization that
can be readily extended and integrated into more complex
decision processes, e.g. unit commitment, transmission switching.
We demonstrate the computational performance and convergence
quality of the SLP IV-ACOPF compared to an interior-point
algorithm for solving the nonlinear ACOPF, on publicly available
IEEE (14 to 300 buses) and Polish networks (2,383 to 3,375
buses) without and with thermal line limits. While the interior
point run-time scales as a polynomial function of network size,
run-time of the SLP IV-ACOPF demonstrates linear scaling on
these same networks. We also report indicators of convergence
quality, specifically the aggregated production bid costs, whether
constraint relaxation was required for the solution, and the
network power factors.

I. NOMENCLATURE

Sets:

N Set of buses {1, . . . , N}
K Set of lines {1, . . . ,K}
A(n) Set of buses that are adjacent to node n

F Set of flows {1, . . . , 2K}

Indices:

h Successive linear program iter(ation); h ∈ H
n,m Bus (node) indices; n,m ∈ N
k Three-phase transmission element; k ∈ K
k′ Monitored flowgate; k′ ∈ K′(h) ⊂ K
k (n,m) Flow on transmission element k from bus n to

m; k (n,m) ∈ F where k(m,n) denotes the flow

in the opposite direction along line k, k(n, ·)
denotes withdrawals from bus n, and k(·, n)
denotes injections to bus n

k (·) Bidirectional flows on k; k (·) ∈ F
l Piecewise linear (pwl) segment; l ∈ L
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Variables:

pgn Total linearized real power generation at bus n

p
g
n,l Linear segment l of generation at bus n

qgn Reactive power generation at bus n

vn Voltage magnitude at bus n

vsqn Linearization of (vn)
2

vrn Real part of voltage at bus n

vjn Imaginary part of voltage at bus n

irn Real part of current injection at bus n

ijn Imaginary part of current injection at bus n

ik(n,m) Current magnitude on k from bus n to m

i
sq

k(n,m) Linearization of
(
ik(n,m)

)2

ir
k(n,m) Real part of current on k from bus n to m

i
j

k(n,m) Imaginary part of current on k from bus n to m

Parameters:

BMVA Power base in MVA

Rk Series resistance of line k

Xk Series reactance of line k

Gk Series conductance of line k

Bk Series susceptance of line k

Yk Series admittance of line k; Yk = Gk + jBk

Gsh
kn Shunt conductance on line k connected to n

Bsh
kn Shunt susceptance on line k connected to n

Y sh
kn Shunt admittance on line k connected to n

Gsh
n Shunt conductance at bus n

Bsh
n Shunt susceptance at bus n

Y sh
n Shunt admittance at bus n

τkn Ideal transformer on the n-side of line k

|τkn| Transformer turns ratio on the n-side of line k

φkn Phase-shifter on the n-side of line k

P d
n Real power demand at bus n

Qd
n Reactive power demand at bus n

Pmin
n Minimum real power for generation at bus n

Pmax
n Maximum real power generation at bus n

Qmin
n Minimum reactive power generation at bus n

Qmax
n Maximum reactive power generation at bus n

V min
n Minimum voltage magnitude at bus n

V max
n Maximum voltage magnitude at bus n

Imax
k Maximum current magnitude on line k

V
(h)
n Step-size bound on the voltage at bus n in iter h

Cg,2
n Quadratic cost coefficient for generation at bus n

Cg,1
n Linear cost coefficient for generation at bus n

Cq
n Linear cost coefficient for reactive support at bus n

C
g
n,l Linear segment l of the quadratic cost at bus n

P
g
n,l Maximum length of piecewise segment l at bus n
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II. INTRODUCTION

THE alternating current optimal power flow (ACOPF)

problem, also known as the OPF, is solved by system

operators to co-optimize real and reactive power dispatch, to

promote reliable operation and implement efficient markets.

The ACOPF originated from Carpentier’s reformulation of

the economic dispatch problem based on the Karush-Kuhn-

Tucker (KKT) conditions [1]. The ACOPF is a nonconvex,

nonlinear optimization problem, for which finding globally op-

timal solutions is known to be non-deterministic polynomial-

time (NP) hard. Consequently, this key dispatch problem is

not presently solved exactly. Instead, Independent System

Operators (ISOs) and other grid operators use approximate

solution techniques based on linear programming (LP) and

mixed-integer programming (MIP). Leveraging significant re-

cent performance improvements in commercial LP and MIP

solvers, dispatches and prices can be obtained within the

required time limits. Such approximations are additionally em-

bedded within other optimization problems to address power

system restoration, topology control, security-constrained unit

commitment, and transmission planning.

In deregulated electricity markets, OPF tractability is critical

to support efficient commitment, dispatch and market clear-

ing strategies based on Locational Marginal Prices (LMPs).

Presently, the dominant pricing method in deregulated US

markets involves computation of the nodal LMP which ac-

counts for network congestion and line losses. Approximation

methods that linearly relate MW controls to MW flows on the

network are employed for both dispatch and price formation.

Independent System Operators (ISOs) commonly use the di-

rect current approximation of the OPF, known as the DCOPF.

The DCOPF solely accounts for real power dispatch; reactive

power dispatch is determined subsequently through a correc-

tive process. Specifically, full alternating current (AC) feasibil-

ity is achieved through an iterative, quasi-optimization process

to ensure that a realistic engineering solution is obtained by

the DCOPF model, and to identify constraint violations that

may require preventive actions including re-dispatch, reactive

power compensation, or voltage support. Another common

approach is to solve a decoupled ACOPF model, which iterates

between P–Θ and Q–V subproblems. Under normal operating

conditions, the DCOPF and the decoupled ACOPF model

provide reasonably accurate approximations of the real power

dispatch and the associated LMPs observed in AC network

models. The models deviate from an acceptable AC feasible

solution when the system is stressed, e.g., when there exists a

strong physical coupling between real and reactive power (e.g.,

as specified by generator capability curves) or when voltage

limits restrict real power dispatch.

There is over half a century of work on the OPF. In

the literature to date, various reformulations, decomposition

methods and algorithms have been proposed; we refer to [2],

[3], [4] and [5] for thorough surveys. Here, we focus on

methods that solve the OPF via approaches based on linear

or mixed-integer programming.

Methods that use a MIP to solve the OPF introduce binary

variables to model nonconvex, nonlinear functions with a

piecewise linear representation. Zhang et al. [6] linearize

power flows by treating the off-nominal bus voltages as

variables and then introduce piecewise linear functions with

associated binary variables to account for network losses,

while simultaneously preventing fictitious losses. The authors

then demonstrate the accuracy and computational speed of

the proposed algorithm on multiple test cases [7], ranging

in size from 14-bus to 3,120-bus networks. Some researchers

have used this MIP reformulation of the ACOPF to analyze

steady-state operations on radial, as opposed to more general

meshed, networks. Borghetti et al. [8] consider the minimum

loss reconfiguration problem of distribution networks and

approximate the nonlinearities associated with Kirchhoff’s

voltage law using piecewise linear functions. The authors

present results for four networks, with the largest being a 69-

bus (74-line) network. Ferreira et al. [9] solve the same mini-

mum loss reconfiguration problem by introducing disjunctive

constraints, formulation of piecewise linear functions using

specially ordered sets of type 2 (SOS2), and McCormick’s

convex envelope to model bilinear products. The authors report

limited results on 16-bus and 35-bus networks.

Other linear ACOPF approximations do not introduce binary

variables, and thus can be solved efficiently. Franco et al.

[10] apply a least-squares regression to obtain a non-iterative

linear approximation of the OPF in terms of the real and

imaginary voltage components. The approximation in [10]

does not consider numerous physical constraints (e.g., phase

angles, voltage magnitudes, reactive power, and thermal line

limits), and only limited results for a 136-bus network are

provided. Mohapatra et al. [11] formulate the OPF in terms of

incremental variables and solve the nonlinear formulation by

applying Newton’s power flow and the primal-dual interior

point method. Although the authors report results for the

IEEE 14-bus, 118-bus, and 300-bus networks along with a

fictitious 1,000-bus network, the proposed formulation and

subsequent testing does not consider phase angles and thermal

line limits. Coffrin et al. [12] use voltage estimates to derive

a piecewise linear representation of apparent power through

the introduction of an additional thirteen constraints per line

to approximate the associated convex hull, with breakpoints

in the range of ±π/12 for small angle differences. In further

work, Coffrin et al. [13] introduce a piecewise linear approx-

imation of the cosine term in the power flow equations, and

use initialization techniques based on Taylor series expansions

to solve for the remaining nonlinear terms.

Many recent studies apply convexification techniques to

the ACOPF. Bai et al. [14] propose a semidefinite relaxation

(SDR) for which Lavaei and Low [15] derive a sufficient

condition under which the SDR is exact, i.e., a globally

optimal solution is guaranteed. Lavaei and Low further prove

that if the network is radial, then this sufficient condition

always holds [15]. A shortcomings of this relaxation is that

it provides no mechanism to recover a feasible solution

when the sufficient condition is not satisfied. There are also

practical difficulties in efficiently implementing a semidefinite

program in branch-and-bound context, including the lack of

an initialization method and limitations in scalability due to

the number of linear algebraic iterations required during the
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solution process. Furthermore, Lesieutre et al. [16] illustrate

practical scenarios where the SDR fails to produce physically

meaningful solutions.

In this work, we propose a novel current-voltage (IV)

successive linear programing (SLP) approach to solving the

ACOPF, which we refer to as the SLP IV-ACOPF. We solve a

linear system of equations without decomposition, and repre-

sent network flows linearly in terms of complex current instead

of apparent power. We apply a combination of linearization

and reduction techniques to the problem constraints. We itera-

tively co-optimize real and reactive power power dispatch, and

introduce no binary variables in our approach. Our approach

can be extended to include discrete controls and embedded

within branch-and-bound algorithms to support more complex

decision processes. In Sections III and IV, we summarize

and detail our SLP IV-ACOPF algorithm. In Section V, we

demonstrate the computational performance and convergence

quality for our method. We conclude in Section VI with a brief

discussion of our results.

III. ALGORITHM OUTLINE

Fig. 1: A successive linear programing approach to solve the IV-
ACOPF.

Our overall solution strategy in the SLP IV-ACOPF is

depicted in the process diagram of Figure 1. In the initial

iteration (h = 0), we initialize variables and the evaluation

point for the Taylor series approximations using a flat start,

randomized start, or warm start. If the calculated power

flows from this initialization are not feasible, we update the

initializations to reside within constraint bounds. We then

iteratively solve the resulting LP subproblem. Following each

iteration h, we check whether the solution meets either of the

following stopping criteria: (1) the solution is ACOPF feasi-

ble within a specified tolerance or (2) a maximum iteration

limit is reached (see Appendix VII-C). If neither of these

criteria are met, we update the Taylor series evaluation points

v̂
r(h)
n , v̂

j(h)
n , î

r(h)
n , î

j(h)
n , î

r(h)
k(·) , and î

j(h)
k(·) ; for an arbitrary evalu-

ation point x̂(h), we have that x̂(h) = x∗ from iteration h− 1.

Following the Taylor series evaluation point update, we

update all flowgate monitors—to identify lines that are near or

at capacities. For any evaluation points that are ACOPF infea-

sible, we reset these parameters to be within their bounds and

accordingly add tangential cutting planes to enforce ACOPF

feasibility in the following iteration. The step size bounds,

which limit the approximation error, are also modified before

resolving the LP subproblem.

Upon termination, the algorithm can yield one of the fol-

lowing outcomes: (1) a KKT optimal solution to the ACOPF is

identified, (2) the SLP IV-ACOPF optimal solution is ACOPF

feasible but not optimal, (3) the SLP IV-ACOPF optimal

solution is ACOPF infeasible, or (4) the SLP IV-ACOPF is

infeasible. Results meeting criteria (1) through (3) may be

meaningful in practice. An additional step to recover the

non-penalized LMPs is required if the criteria (3) is met.

An outcome of (4) indicates that either the SLP IV-ACOPF

requires a better initialization, the step size used is too small,

or that the ACOPF is unbounded or has no solution.

IV. ALGORITHM DETAILS

In this section, we first present the network model in IV-A

and the canonical problem formulation in IV-B. In IV-C, we

linearize and reduce the nonlinear ACOPF in order to construct

the LP subproblem in IV-D.

A. Network Model

We assume balanced three-phase, steady-state conditions;

the nomenclature is in Section I. We formulate the nonlinear

ACOPF and the subsequent LP subproblem in rectangular

coordinates for the voltage phasor n = vrn + jvjn at each

bus n ∈ N ,, the current phasor n = irn + jijn at each bus

n ∈ N , and the current phasor k(·) = ir
k(·) + jij

k(·) on all

network flows k (·) ∈ F .

Applying the π-model, we determine the series conductance

Gk and series susceptance Bk as

Gk = Rk

/(
R2

k +X2
k

)
(1)

Bk = −Xk

/(
R2

k +X2
k

)
. (2)

In order to characterize the resistive losses and leakage flux

(i.e. self-reactance), we model a practical transformer that is

located on the bus n side as an ideal transformer with turns

ratio |τkn| in series with a series admittance Yk = Gk + jBk.

Depending on if τkn is real or complex, the transformer is in-

phase or phase-shifting. We can similarly represent a phase-

shifter as τkn = |τkn| e
jφkn . For the branch admittance matrix

[
Y k
1,1 Y k

1,2

Y k
2,1 Y k

2,2

]
=

[
|τkn|

2 (
Yk + Y sh

kn

)
−τ∗knτkmYk

−τknτ
∗

kmYk |τkm|2
(
Yk + Y sh

km

)
]
, (3)

we model the complex current flows on line k as

[
k(n,m)

k(m,n)

]
=

[
Y k
1,1 Y k

1,2

Y k
2,1 Y k

2,2

]
×

[
n

m

]
. (4)

The above representation is for a two-winding transformer,

and if τkn = τkm = 1, then the equivalent π-model is of

a transmission line. For an N -winding transformer, we would
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have a Y k matrix of size N×N for the unified branch model.

We can represent the linear relationship between the real and

imaginary parts of the complex current flows, k(n,m) and

k(m,n), and the complex nodal voltages, n and m, as

irk(n,m) = Re
(
Y k
1,1 n + Y k

1,2 m

)
(5)

i
j

k(n,m) = Im
(
Y k
1,1 n + Y k

1,2 m

)
(6)

irk(m,n) = Re
(
Y k
2,1 n + Y k

2,2 m

)
(7)

i
j

k(m,n) = Im
(
Y k
2,1 n + Y k

2,2 m

)
(8)

for all flows k (·) ∈ F . The nodal current balance for each bus

n ∈ N is

irn −

(∑

k(n,·)
irk(n,m) +Gsh

n vrn −Bsh
n vjn

)
= 0 (9)

ijn −

(∑

k(n,·)
i
j

k(n,m) +Gsh
n vjn +Bsh

n vrn

)
= 0. (10)

B. Canonical Formulation

We formulate the nonlinear ACOPF in rectangular coordi-

nates where we balance on the above network current flows.

Instead of introducing the square root
(√

·
)

operator, we

compute the squared voltage magnitude (vn)
2 = (vrn)

2+(vjn)
2

for all buses n ∈ N and the squared current magnitude

(ik(·))
2 = (ir

k(·))
2 + (ij

k(·))
2 for all flows k (·) ∈ F . The

canonical formulation is

min
∑

n∈N

Cg,2
n (pgn)

2
+ Cg,1

n pgn (11)

subject to

(5)− (10) (12)

pgn −
(
vrni

r
n + vjni

j
n

)
= P d

n (13)

qgn −
(
vjni

r
n − vrni

j
n

)
= Qd

n (14)

Pmin
n ≤ pgn ≤ Pmax

n (15)

Qmin
n ≤ qgn ≤ Qmax

n (16)
(
V min
n

)2
≤ (vn)

2 ≤ (V max
n )

2
(17)

(
ik(·)

)2
≤ (Imax

k )
2

(18)

for all n ∈ N in (13) − (17) and all k (·) ∈ F in (18). The

generator bid curves in the objective function (11) are convex

quadratic. The upper bounds in (17) and (18) are nonlinear

and convex; equations (13), (14), and the lower bound in (17)

are nonlinear and nonconvex.

C. Linearization and Reduction Methods

We apply approximations, relaxations, and penalty variables

in reformulating the nonlinearities in the canonical formulation

of (11) − (18). We also reduce the constraint set to monitor

flowgate limits which are near or at the bound.

1) Piecewise Linear Interpolations: A piecewise linear in-

terpolation can be applied to approximate the quadratic genera-

tor bid curve in (11) where the generators bid at marginal cost.

Typically, generator bid curves are monotonically increasing,

and by partitioning the interval into more linear segments, this

approach results in a tighter upper bound on the quadratic cost

function.

To construct the piecewise linear function, we partition the

interval
[
Pmin
n , Pmax

n

]
into |L| linear segments with length

P
g
n,l =

(
Pmax
n − Pmin

n

)
/ |L|. There are |L|+1 points where

the l-th segment is associated with points

[xl, xl+1] :=
[
Pmin
n + lP

g
n,l, P

min
n + (l + 1)P g

n,l+1

]
. (19)

For l = 0, . . . , |L|, we have that x0 < x1 < . . . < x|L|.

For each segment l ∈ L, we calculate the midpoint

of the linear interpolation between points (xl, f
′

n (xl)) and

(xl+1, f
′

n (xl+1)). Applying the slope of the bid curve, the

resulting cost coefficient is

C
g
n,l = Cg,1

n +
(
BMVA

)2
Cg,2

n (xl + xl+1) (20)

for all segments l ∈ L and buses n ∈ N ; the
(
BMVA

)2

accounts for any per-unit scaling of the power variables. We

approximate the aggregate bid curve in (11) as

bids (·)(h) =
∑

n∈N

∑

l∈L

C
g
n,lp

g
n,l + C0

n (21)

for iteration h, where C0
n = Cg,2

n

(
Pmin
n

)2
+Cg,1

n Pmin
n when

Pmin
n > 0.

Furthermore, each segment p
g
n,l of the piecewise linear

function is limited by P
g
n,l, that is

p
g
n,l ≤ P

g
n,l (22)

for all n ∈ N and l ∈ L. The aggregate of the segments at

bus n must equal the real power generation

pgn =
∑

l∈L

p
g
n,l + Pmin

n (23)

for all n ∈ N .

2) Taylor Series Approximations: We apply first order

Taylor series approximations to address the nonlinear terms

pgn, q
g
n, (vn)

2 and (ik(·))
2 in constraints (13), (14), (17) and

(18), respectively. For iteration h, we use the Taylor series

evaluation points (denoted with a caret) to approximate the

first order linearizations

vsqn = 2v̂r(h)n vrn + 2v̂j(h)n vjn −
(
v̂r(h)n

)2

−
(
v̂j(h)n

)2

(24)

pgn = v̂r(h)n irn + v̂j(h)n ijn + vrnî
r(h)
n + vjnî

j(h)
n

− v̂r(h)n îr(h)n − v̂j(h)n îj(h)n + P d
n (25)

qgn = v̂j(h)n irn − v̂r(h)n ijn + vjnî
r(h)
n − vrnî

j(h)
n

− v̂j(h)n îr(h)n + v̂r(h)n îj(h)n +Qd
n (26)

for all buses ∀n ∈ N , and

i
sq

k(·) = 2̂i
r(h)
k(·) i

r
k(·) + 2̂i

j(h)
k(·) i

j

k(·) −
(
î
r(h)
k(·)

)2

−
(
î
j(h)
k(·)

)2

(27)

for all flows ∀k (·) ∈ F . Since a first order method is used,

larger step sizes result in larger approximation error. Therefore,

we must require step sizes that are small enough to gain

higher accuracy (i.e. lower truncation error) but large enough

to minimize the required number of iterations. Depending on

the penalty and real power mismatch costs, the step size is

restricted at an accelerated or decelerated rate; see Appendix

VII-A. At each iteration h, we update the tunable parameter

V
(h)
n and introduce the step size limits

∣
∣
∣vrn − v̂r(h)n

∣
∣
∣ ≤ V (h)

n (28)
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Fig. 2: Outer approximation of the voltage and current phasor bounds
with box constraints.

∣
∣
∣vjn − v̂j(h)n

∣
∣
∣ ≤ V (h)

n (29)

on the real and imaginary parts of the nodal voltage, vrn and

vjn, for all buses n ∈ N . By controlling the step size for the

real and imaginary parts of the nodal voltages, we limit the

approximation error in the real and reactive power.

3) Relaxations and Penalty Factors: In conjunction with

(24) and (27), we introduce the following box constraints on

the real and imaginary parts of the nodal voltage as

−V max
n ≤ vrn ≤ V max

n (30)

−V max
n ≤ vjn ≤ V max

n (31)

for all buses ∀n ∈ N , and also on the real and imaginary parts

of the current flow as

−Imax
k ≤ irk(·) ≤ Imax

k (32)

−Imax
k ≤ i

j

k(·) ≤ Imax
k (33)

for all flows ∀k (·) ∈ F , in order to bound our approximation,

as illustrated in Figure 2.

However, the relaxations along with the first order Taylor

series approximations can result in ACOPF infeasible so-

lutions. When this occurs due to violations of the voltage

(17) or current (18) upper bound, we reset the evaluation

points to the Taylor series approximation that resulted in

an ACOPF infeasible solution. We also include a tangential

cutting plane to the constraint set for the subsequent iteration,

as illustrated in Figure 3. We impose constraint satisfaction

of the tangential cutting plane by introducing a slack variable,

which is penalized in the cost function; see Appendix VII-B.

This approach only applies for the outer approximation on the

upper bounds.

When the lower bound constraint in (17) is violated, we do

not introduce a tangential cutting plane, which would eliminate

parts of the ACOPF feasible region. Instead, we only impose

constraint satisfaction by introducing slack variables that are

penalized in the cost function. We treat the bounds on the

first order Taylor approximations similarly. As a result we

reformulate (15) − (18) as

Pmin
n − pviol,−n ≤ pgn ≤ Pmax

n + pviol,+n (34)

Qmin
n − qviol,−n ≤ qgn ≤ Qmax

n + qviol,+n (35)

Fig. 3: The infeasible solution x
∗ from iteration h− 1, the updated

evaluation point x̂(h), and the tangential cutting plane included to the
constraint set for iteration h.

(
V min
n

)2
− vviol,−n ≤ vsqn ≤ (V max

n )
2
+ vviol,+n (36)

i
sq

k(·) ≤ (Imax
k )

2
+ i

viol,+
k(·) (37)

where the slack variables pviol,+n , qviol,+n , vviol,−n , vviol,+n , and

i
viol,+
k(·) are penalized in the objective function.

4) Constraint Reduction: We apply the concept of flowgate

monitors to solve the linearized formulation with a reduced

constraint set. We compute and monitor the flows for a subset

of lines k′ ∈ K′(h) ⊂ K where k′ (·) ∈ F are near or at

(Imax
k′ )

2
. The subset of lines K′(h) ⊂ K is updated at each

iteration h > 0. The constraint set is therefore reduced to only

include (27), (32), (33), and (37) for all k (·) = k (·)′ ∈ F .

D. LP Subproblem Formulation

For each iteration h, the SLP IV-ACOPF solves the follow-

ing LP subproblem:

cost (·)(h) = min
(

bids (·)(h) + penalty (·)(h)
)

(38)

subject to

(5)− (10), (22)− (37),Appendix VII-B line (4) (39)

where bids (·)(h) is defined in (21) and penalty(·)(h) is defined

as

penalty (·)(h) =
∑

n∈N

[
P ε
n

(
pviol,−n + pviol,+n

)

+Qε
n

(
qviol,−n + qviol,+n

)
+ V ε

n

(
vviol,−n + vviol,+n

)
]

(40)

+
∑

k′
∈K

′(h)
Iεk′

(
i
viol,+
k′(n,m) + i

viol,+
k′(m,n)

)
.

The tangential cutting planes in line (4) of the process in

Appendix VII-B are included in order to modify any ACOPF

infeasibilities from the prior solution, for iterations h > 0.

V. RESULTS

We now test the computational performance and conver-

gence quality of our SLP IV-ACOPF algorithm compared to

a widely used interior point algorithm for solving a modified

version of the nonlinear ACOPF described in Section IV-B.
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TABLE I: Parameter defaults. Note that the flat start requires a slower
rate a in step-size decrease due to poor initial start quality.

Parameter Description Value

P ε
n Real Power Penalty 2.5 ·maxn C

g,1
n

Qε
n Reactive Power Penalty 12.5 ·maxn C

g,1
n

V ε
n Voltage Penalty 15 ·maxn C

g,1
n

Iε
k′ Line Current Penalty 25 ·maxn C

g,1
n

r2
(
Imax

k

)2
Flowgate Monitor Rate r = 0.9

Imax

k
Thermal Line Limits Smax∗

k(·)

/
min

i=n,m∈k(·)
V max

i

|L| Piecewise Segments 10
LIM Iteration Limit 20
a Step-Size Parameter 0.25 (0.1 for flat start)
b Step-Size Parameter 1.5

Δ
P−tol Mismatch Tolerance 50e-4

Δ
P−tol
n Mismatch Tolerance 10e-4

Δ
Q−tol Mismatch Tolerance 50e-3

Δ
Q−tol
n Mismatch Tolerance 50e-4

The modified version includes penalty factors on inequality

constraints and the piecewise linear objective function given by

(38). Both approaches were implemented in Python 2.7 with

Pyomo 3.5 [17] and executed on a workstation with four quad-

core Intel Xeon 2.7 GHz processors with hyper-threading and

512GB RAM. We solve the LP subproblems of the SLP IV-

ACOPF with either Gurobi 5.6.2 [18] or CPLEX 12.5.1 [19]

limited to two threads, and the nonlinear ACOPF with IPOPT

3.11.4 configured with the MA27 linear sub-solver (no multi-

threading support) [20]. We compare the two approaches on

various IEEE and Polish networks [7]. For each network, we

consider a baseline case and a thermally constrained case. The

thermal line limits are systematically computed as described

in Lipka et. al. [21] from the optimal solution for the apparent

power flow Smax∗
k(·) using MATPOWER [7]; the defaults for

this and other parameters are specified in Table I.

We consider four types of initializations: (1) flat start, (2)

DC warm start, (3) AC warm start, and (4) uniform start.

The flat start assumes unit voltage and half-max output for all

generation. The DC and AC warm starts are constructed from

DCOPF and ACOPF optimal solutions, respectively, where the

demand is parameterized as P d
n ∼ U

(
0.9P d

n , 1.1P
d
n

)
for all

n ∈ N . The uniform starts assume that vrn ∼ U
(
V min
n , V max

n

)

and vjn = 0 for all n ∈ N . The sample size for the various

initialization types is one for the flat start and 10 for the

remaining start types. To reduce variance in the comparison,

we use the same starting points to test both the nonlinear

ACOPF and the SLP IV-ACOPF approaches.

In general, CPLEX converged to an optimal solution in

98.4% of the runs, Gurobi in 99.1% of the runs, and IPOPT in

100% of the runs for both baseline and thermally constrained

networks. In Table II, we report the fastest recorded solver

CPU time for each test configuration. The solution times

for the SLP IV-ACOPF are reported as a multiplier of a

reference CPU time, taken as the time required by IPOPT

to solve the nonlinear ACOPF. To analyze algorithm scaling

properties, we fit regression models relating network size

to run time. Empirically, CPLEX scaling is approximately

linear, i.e. O
(
n0.98

)
for the baseline and O

(
n1.01

)
for the

thermally constrained case. Gurobi empirical scaling is slightly

worse, with O
(
n1.02

)
for the baseline and O

(
n1.06

)
for the

TABLE IV: The network power factors for the nonlinear ACOPF that
correspond to the fastest recorded run; the analogous SLP IV-ACOPF
power factors are within two significant digits of these baseline
values.

Network Baseline Thermal Line Limits

IEEE-14 0.97 0.97
IEEE-30 0.89 0.89
IEEE-57 0.98 0.98
IEEE-118 1.00 1.00
IEEE-300 0.96 0.96

Polish-2,383 0.96 0.96
Polish-2,737 1.00 1.00
Polish-2,746 0.99 0.99
Polish-3,012 0.96 0.96
Polish-3,120 0.97 0.97
Polish-3,375 0.98 0.98

thermally constrained case. The IPOPT solver performance

scales more poorly than either SLP IV-ACOPF configuration,

with O
(
n1.13

)
for the baseline and O

(
n1.14

)
for the thermally

constrained case. When configured with CPLEX, the SLP IV-

ACOPF is faster than IPOPT solving the nonlinear ACOPF

on the largest network (Polish-3,375). In general, SLP IV-

ACOPF scales linearly even when binding thermal line limits

are present.

In Table III we report the aggregate bid production costs,

i.e., bids (·)(h) in Equation (38), that correspond to runs with

the fastest recorded solver CPU time. The results indicate that

penalty costs are present in all solutions to the Polish networks

obtained using IPOPT on the nonlinear ACOPF formulation.

Furthermore, penalty costs are present for both approaches

when solving the thermally constrained IEEE-118 and Polish-

2,383 networks, and for the SLP IV-ACOPF when solving the

thermally constrained IEEE-30 network. The SLP IV-ACOPF

can yield lower bid production costs than IPOPT, particularly

on runs where penalty costs are present in the nonlinear

ACOPF solution. As we report in Table IV, the power factors

for solutions obtained using both approaches are identical to

two significant digits. A unity power factor indicates that less

current is required to supply the power demanded. Therefore,

power factors near 1.0 are desirable.

In Figures 4a and 4b, we report the fastest recorded solve

times across the four initialization types for CPLEX and

Gurobi configurations of SLP IV-ACOPF, respectively. The

figures aggregate both the baseline and thermally constrained

network cases. The flat start does not perform competitively

for this formulation; with the flat start (vrn = 1 and vjn = 0
for all n ∈ N ), the current flows are initialized to zero across

symmetric transmission elements, and the Taylor series ap-

proximations in Equations (24)− (26) are such that the entire

first order expansion is not assessed for the initial iteration

h = 0. However, the uniform starts perform competitively

compared to the DC and AC warm starts. The uniform starts

do not require any knowledge of the prior operating state;

by initializing vrn with some variation, the subsequent current

flows become nonzero. Figures 4a and 4b illustrate that for

many of the cases tested, the SLP IV-ACOPF acquires the

fastest recorded solver CPU time with the uniform start. More

comprehensive results can be found in our online addendum

[22].
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TABLE II: The fastest recorded solver CPU time across all simulations for both baseline and thermally constrained networks.

Baseline With Thermal Line Limits
Network Solver CPU Time (s) Multiplier (×) Solver CPU Time (s) Multiplier (×)

ACOPF SLP IV-ACOPF IV-ACOPF SLP IV-ACOPF
IPOPT CPLEX Gurobi IPOPT CPLEX Gurobi

IEEE-14 0.10 3.40 2.50 0.11 1.73 1.55
IEEE-30 0.15 1.40 5.93 0.14 3.86 4.79
IEEE-57 0.31 2.65 3.06 0.29 2.72 3.55
IEEE-118 0.94 2.33 3.71 0.83 2.99 4.52
IEEE-300 2.19 2.14 4.21 1.82 2.73 5.79

Polish-2,383 25.59 1.13 2.68 20.72 1.75 3.10
Polish-2,737 24.28 1.39 2.41 24.04 1.70 2.53
Polish-2,746 22.48 1.70 3.14 24.50 1.72 2.81
Polish-3,012 38.44 1.14 1.77 32.23 1.46 2.07
Polish-3,120 27.10 1.68 2.60 37.73 1.42 1.93
Polish-3,375 68.83 0.70 1.22 65.24 0.99 1.30

TABLE III: The aggregate bid production costs that correspond to the fastest recorded run, as presented in Table II. Entries in bold indicate
the presence of penalty costs in the obtained solutions. Note that there are no active thermal line limits for IEEE-300 runs.

Baseline With Thermal Line Limits
Network Bid Production Cost ($) Relative Change Bid Production Cost ($) Relative Change

ACOPF SLP IV-ACOPF ACOPF SLP IV-ACOPF
IPOPT CPLEX Gurobi IPOPT CPLEX Gurobi

IEEE-14 8,091 1.2E-04 1.2E-04 9,294 -3.2E-04 -3.2E-04
IEEE-30 575 0.0E+00 0.0E+00 582 1.7E-02 2.6E-02
IEEE-57 41,817 5.3E-04 1.7E-04 41,978 2.4E-04 -4.8E-05

IEEE-118 129,903 1.2E-03 1.2E-03 136,575 1.8E-03 1.8E-03
IEEE-300 720,149 3.6E-05 1.9E-05 720,149 1.8E-05 6.9E-05

Polish-2,383 1,858,445 2.6E-04 4.8E-04 1,882,042 -1.2E-02 -1.2E-02

Polish-2,737 742,678 1.1E-04 1.2E-04 742,687 9.3E-05 9.7E-05
Polish-2,746 1,185,113 1.8E-04 1.8E-04 1,185,505 2.4E-04 2.4E-04
Polish-3,012 2,581,018 1.4E-04 3.7E-04 2,598,020 1.5E-04 1.9E-04
Polish-3,120 2,137,307 2.0E-04 1.4E-04 2,142,922 -6.8E-04 -7.1E-04
Polish-3,375 7,402,883 1.2E-03 1.4E-03 7,415,409 1.2E-03 1.4E-03
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Fig. 4: The fastest recorded CPU time for CPLEX in (a) and Gurobi in (b) on each initialization type in both the baseline and thermally
constrained Polish networks.

VI. DISCUSSION

We propose a linearization of the ACOPF, the SLP IV-

ACOPF, that can be extended and integrated into practical ap-

plications. The algorithm can leverage commercial LP solvers

such as Gurobi and CPLEX, and can be implemented on

any combination of software and hardware platforms that

support optimization in linear programming. The SLP IV-

ACOPF demonstrates a balance between accuracy and ef-

ficiency. Whereas the nonlinear ACOPF scales in polyno-

mial time, the solver CPU time for the SLP IV-ACOPF

demonstrates linear time complexity on the IEEE and Polish

networks, without and with network congestion. Thus SLP IV-

ACOPF demonstrates robust computational performance even

in the thermally constrained networks. The algorithm does
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not require a warm start to perform competitively with the

nonlinear ACOPF.

VII. APPENDIX: SUPPORTING DETAILS

A. Step-Size Limits

At the end of each iteration h > 0, we modify the tunable

parameter V
(h)
n to control the approximation error. As the

approximation nears ACOPF feasibility, we accelerate the

convergence rate; if the approximation worsens, we decelerate

this rate through calculating the ratio

γ(h) =
penalty (·)(h) + f (·)(h)

cost (·)(h) + f (·)(h)
(A.41)

where f (·)(h) =
∑

n∈N

MISMATCHε
n

∣
∣P ∗

n − pgn
∣
∣ (A.42)

and P ∗

n = P d
n + vr∗n ir∗n + vj∗n ij∗n . (A.43)

As γ(h) → 0, the solution becomes ACOPF feasible, i.e.

f (·)(h) = 0 and penalty (·)(h) = 0. We calculate tunable

parameters β = −a log γ(h)+b and α = 1/β and the allowable

stepsize as

V (h)
n ← α |V max

n |
/
hβ . (A.44)

For faster decay, the user can increase a. When γ(h) = 1, then

β = b.

B. Infeasibility Handling

The following routine determines the updated evaluation

point and resulting tangential cutting plane when the voltage

magnitude upper bound in (17) or the thermal line limit in

(18) is violated by the optimal solution of the LP subproblem

in iteration h. Without loss of generality, we denote the real

part as xr, the imaginary part as xj , and the upper bound as

Xmax.

1: if
(
x̂
r(h)

)2

+

(
x̂
j(h)

)2

> (X
max

)
2

then

2: x̂
r(h)

←

(
x̂
r(h)

)√
(Xmax)

2
/(

(x̂r(h))
2
+ (x̂j(h))

2
)

3: x̂
j(h)

←

(
x̂
j(h)

)√
(Xmax)

2
/(

(x̂r(h))
2
+ (x̂j(h))

2
)

4: add constraint:
x̂
r(h)

x
r
+ x̂

j(h)
x
j
≤ (X

max
)
2
+ x

viol,+

5: end if

C. Stopping Criteria

The stopping criteria assesses three possible scenarios: (1)

the mismatch error on real and reactive power injections for

all buses n ∈ N is less than a specified tolerance, (2) the net

of these mismatches is less than a specified tolerance, or (3)

the maximum iteration limit has been reached.

1: P
∗

n = P
d

n + v
r∗

n i
r∗

n + v
j∗

n i
j∗

n

2: Q
∗

n = Q
d

n + v
j∗

n i
r∗

n − v
r∗

n i
j∗

n

3: for all n ∈ N do

4: δ
p

n ← |P
∗

n − p
g

n|

/
min (|P

∗

n | , |p
g

n|)

5: δ
q

n ← |Q
∗

n − q
g

n|

/
min (|Q

∗

n| , |q
g

n|)

6: end for

7: if

⎛
⎜⎝

max
n∈N

δ
p

n ≤ Δ
P−tol

n and max
n∈N

δ
q

n ≤ Δ
Q−tol

n

or
∑

n∈N
δ
p

n ≤ Δ
P−tol and

∑
n∈N

δ
q

n ≤ Δ
Q−tol

or h ≥ LIM

⎞
⎟⎠

then
8: return solution;
9: end if
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