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Abstract. Participants in electricity markets face a substantial amount of uncertainty, and
with increased penetration of volatile renewable generation this uncertainty has further
increased. Conventionally designed electricity markets cope with uncertainty by running
two markets: a market that is cleared ahead of time, followed by a real-time balancing
market to reconcile actual realizations of demand and available generation. In such mech-
anisms, the initial clearing process does not take into account the distribution of outcomes
in the balancingmarket. Recently, an alternative so-called stochastic settlement market has
been proposed (see, e.g., Pritchard et al. 2010 [Pritchard G, Zakeri G, Philpott A (2010)
A single-settlement, energy-only electric power market for unpredictable and intermit-
tent participants. Oper. Res. 58(4):1210–1219.] and Bouffard et al. 2005 [Bouffard F, Galiana
FD, Conejo AJ (2005) Market-clearing with stochastic security—Part I: Formulation. IEEE
Trans. Power Systems 20(4):1818–1826.]) where the ISO clears both stages in one single
settlement market.

While the effectiveness of the stochastic market clearing mechanism is clear when the
market is competitive, this is open to question for imperfectly competitive markets. In this
paper we consider simplified models for two types of market clearing mechanisms. First,
a market clearing mechanism utilized in New Zealand, whereby firms offer in advance
and are notified of a clearing quantity and price guide based on an estimate of demand,
followed by real-time dispatch. We refer to this as NZTS. Secondly we consider a simpli-
fied stochastic programming market clearing mechanism. We compute Nash equilibria of
games resulting from each of the market clearing mechanisms. We prove that under the
assumption of symmetry, our simplified stochastic programmingmarket clearing is equiv-
alent to a two-period single settlement system that takes account of deviation penalties in
the second stage. These, however, differ from NZTS. We show that when we assume sym-
metry, this stochastic settlement model results in better social welfare than does NZTS.
We also investigate a number of asymmetric examples numerically.

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2017.1610.

Keywords: uncertainty • stochastic programming • electricity markets • equilibrium • market clearing

1. Introduction
Electricity markets face two key features that set them
apart from other markets. The first is that electricity
cannot be stored, so demand must equal supply at all
times. This necessitates the presence of a real-time (or
balancing) market, although it is also imperative that a
day-ahead market clears to cater for the participation
of slower response units.
Second, electricity is transported from suppliers to

load over a transmission network with possible con-
straints. The combination of these two features means
that in almost all electricity markets today, an inde-
pendent system operator (ISO) sets dispatch centrally
and clears the market. Generators and demand-side
users canmake offers and bids, and the ISOwill choose
which are accepted according to a predetermined set-
tlement system.

The conventional arrangement of a day-ahead fol-
lowed by real-time market clearing takes on differ-
ent nuances in various jurisdictions. One approach
used is to run a two-period market clearing model
(see, e.g., Kamat and Oren 2004). In many jurisdic-
tions such as the PJM, this amounts to a day-ahead
followed by a real-time market with separate, finan-
cially binding settlements for each market (see Ott
2003, Zheng and Litvinov 2006). Here, generating firms
bid in supply function offers of generation and the
utilities (or load serving entities) bids demand func-
tions in the day-ahead market. The market is cleared
without participation from volatile renewable genera-
tion such as wind. Then in real time firms compete for
any deviations introduced in the spot through wind
generation, with possibly updated supply and demand
functions. We note that almost all such markets are
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strictly monitored to ensure participants reflect their
true cost of generation.
In New Zealand, however, the nature of the mar-

ket is somewhat different. The New Zealand electricity
market (NZEM) is a hydro-dominated market. As it is
difficult to obtain an accurate value of water, it is not
possible to monitor the NZEM to ensure that gener-
ators bid at cost. In the NZEM, generators can place
offers for a given half hour period up to “gate clo-
sure,” which occurs two hours prior to the designated
period. At gate closure these offers are locked in. Esti-
mates of dispatch quantity and price are provided to
the industry participants based on forecast demand in
the periods leading up to real time. We refer to these
as predispatch quantities and prices.1

At the start of the designated period an accuratemea-
sure of demand is available to the ISO and the gen-
erators are dispatched accordingly. In the NZEM, the
ISO redispatches the generators every fiveminutes dur-
ing a half hour period, using updated demand infor-
mation but according to the same offer curves, locked
in at gate closure.2 In the NZEM there is only a sin-
gle settlement, as the predispatch quantities and prices
are not financially binding. In this two-period single-
settlement (NZTS) market, expected demand is used
to clear the predispatch quantities and the ISO has no
explicit measure of any deviation costs for a generator.
Here, the nature of the supply function (different quan-
tities offered at different prices) is relied upon to allow
firms to cope with different dispatch levels. While this
may have been adequate in systemswith limited uncer-
tainty, growing penetration of renewables can lead to
large deviations in dispatch at gate closure versus real
time. These short-term changes will have associated
costs that are not built into a supply function, which
operates on the principle that demand may vary but
the firm will have more advance warning of this (for
an account of these deviation costs we refer the reader
to Myles and Herron 2012 and Kumar et al. 2012). We
demonstrate in this paper that it is important to reflect
these deviation costs in terms of social welfare. This is
relevant to some recent debates on complexity versus
simplification in electricitymarkets (see Bushnell 2013).
An alternative to the two-period settlement systems

is to use a stochastic settlement process to deal with
variable demand. (We will consider demand as gross
demand net intermittent renewable generation such
as wind, which in the NZEM is forced to offer at
zero price.) In a stochastic settlement, the ISO can
choose both predispatch and short-run deviations for
each generator to maximize expected social welfare
in one step. We might then expect a stochastic set-
tlement system to do better (on average) than a two-
period system. The idea of a stochastic settlement
can be attributed to Bouffard et al. (2005), Wong and
Fuller (2007), and Pritchard et al. (2010) and is further

analyzed in Morales et al. (2012, 2014a, b), and Zavala
et al. (2015). In these two-stage, single settlement mod-
els, the predispatch clears with information about the
future distribution of uncertainties in the system (e.g.,
demand and volatile renewable generation) and infor-
mation about deviation costs for each generator. These
models assume that each firms’ offers and deviation
costs are truthful. In an imperfectly competitive mar-
ket (where suppliers may offer generation above cost)
this assumption is not valid. Can the stochastic settle-
ment auction give better expected social welfare when
firms are behaving strategically? This is the question
explored in this paper.

To answer this question, we should first construct an
equilibrium model of these two market mechanisms.
There are many studies that develop equilibriummod-
els for energy and other markets. These include the
seminal work of Klemperer and Meyer (1989) that ana-
lyzes supply function equilibrium models, as well as
various Cournot and linear supply function equilib-
rium models such as those developed in Downward
et al. (2010), Green (1999), Baldick et al. (2004), and Day
et al. (2002).

These studies focus on a market with a single set-
tlement. For our investigations, it is necessary to build
equilibria over markets with a predispatch followed
by balancing clearing, such as the NZTS. Studies that
address equilibria obtained on a forward (contract)
market followed by a wholesale market yield models
that in their two-stage nature are relevant to our anal-
ysis. These include Allaz (1992), Allaz and Vila (1993),
Willems (2005), and supply function equilibriummod-
els with a preceding contract stage such as Newbery
(1998), Anderson and Xu (2005), Gans et al. (1998),
as well as Haskel and Powell (1994), Willems (2005),
Bushnell (2007), and Su (2007). Our focus for NZTS
however is to address the effect of costs (to the gener-
ators) due to deviations from dispatch point, resulting
from short-term (a few trading periods) variations in
net demand. This has not been studied in any of the
previous papers.

There are also a number of models in the liter-
ature that consider uncertainty in conjunction with
forward markets. von der Fehr and Harbord (1992)
explained how spot prices could be reduced as an effect
of contract forward markets. Shanbhag (2006) inves-
tigated a two settlement stochastic market for a two-
node network using a Nash-Cournot equilibria. Zhang
et al. (2010) proposed a two-stage oligopoly stochastic
Nash-Cournot equilibrium problem with equilibrium
constraints. None of these models however cater for
the recently proposed stochastic programming market
clearing mechanism that we investigate in this paper.

Our Contribution
In this paper, we investigate the effects of using a
stochastic market clearing mechanism that considers
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deviation costs and uncertainty instead of the existing
deterministic mechanisms (such as New Zealand elec-
tricity market). In particular, we define three models,
which we analyze as games. We derive the Nash equi-
libria of these models, and use them to compare the
performance of these models:
1. A two-period settlement model (in particular,

a simplified version of the New Zealand electricity
market) representing a deterministic market clearing
mechanism.

2. A single settlement stochastic programming me-
chanism with deviation costs as part of the offer sub-
mitted by the generating firms.

3. A single settlement stochastic programming me-
chanism with constant deviation penalties.

We start by introducing a simplified version of the
NZTS market currently operated in New Zealand. We
will then introduce a simplified version of the stochas-
tic programming mechanism for clearing electricity
markets. The first simplification in our models is to
use affine supply function offers following the work of
Green (1996, 1999). He used this restricted form of sup-
ply function to assess the effects of policies on enhanc-
ing competition in the England and Wales market. He
showed that in presence of linear demand functions, it
is always possible to find a supply function equilibrium
that is an equilibrium over affine supply functions. The
linear nature of these supply functions assists us in
obtaining a tractable analytical solution. Subsequently,
Baldick et al. (2004) extended Green’s work to piece-
wise linear supply functions. Day et al. have also used
linear supply functions but with specific forms of con-
jectural variation (see Day et al. 2002).

In what follows, we will present existence results
for equilibria for the simplified NZTS and derive
an analytical expression for a symmetric equilibrium
(with identical firms). We then establish the key result
that reduces our simplified stochastic market clear-
ing mechanism (ISOSP) to a NZTS type model, but
with explicit deviation penalties. Here again we con-
struct analytical expressions for symmetric equilibria,
for each level of deviation penalty. Finally we compare
the symmetric equilibria of NZTS and a special case
of ISOSP settlements and show that the ISOSP settle-
ment with fixed, explicit deviation costs performs bet-
ter in terms of expected social welfare for a large range
of deviation penalties that includes the true deviation
costs common to the identical firms.When the assump-
tion of symmetry is relaxed, analytical expressions for
an equilibrium become intractable for eithermodel.We
will therefore present numerical results for a number of
cases and compare equilibria of the two market clear-
ing systems. We find that in all cases ISOSP performs
better than the NZTS.

In Section 6.2, we repeat the symmetric experiments
that construct and compare the equilibria of NZTS and

ISOSPmechanisms, but for the restricted version of lin-
ear supply functions where the intercept is set to zero.
Here we find that there is a unique symmetric equilib-
rium for the game. For this case, we present an example
where the ISOSP welfare is in fact less than the NZTS
mechanism. This result is in contrast to the previous
set of results where generators have another degree of
freedom in their bids in the form of an intercept.

In summary, our contributions to this paper include
the following.

• We present a mathematical model for each of the
three market mechanisms. We prove the existence of
Nash equilibria and derive analytical expressions of
the equilibria for symmetric firms.

• We show that the stochastic settlement mecha-
nismwith fixed deviation penalties can outperform the
NZTSmodel given that the deviation penalty is chosen
appropriately, i.e., in a (large) interval that includes the
true deviation costs.

• To investigate the asymmetric case, through an
iterative process, we compute the equilibria of the
models numerically. Again, the stochastic settlement
outperforms the NZTS model.

• We investigate a special case of stochastic settle-
ment with zero intercepts. We find the unique equilib-
rium and show that the previous conclusion cannot be
extended to this restricted version of ISOSP.

2. The Market Environment
In this paper, we aim to compare different market de-
signs for electricity. We begin by presenting assump-
tions that are common to all markets we consider, fea-
tures of what we call the market environment. These
include such considerations as the number of firms, the
costs firms face, the structure of demand, and so forth.

Assumption 1. The market environment may be defined by
the following features.

• Electricity is traded over a network with no transmis-
sion constraints and no line losses, thus we may consider all
trading as taking place at a single node.

• Demand for electricity is uncertain, and may realize
in one of s ∈ {1, . . . , S} possible outcomes (scenarios), each
with probability θs . Demand in state s is assumed to be
linear, and defined by the inverse demand function ps � Ys −
ZCs , where Cs is the quantity of electricity and ps is the
market price, in scenario s, and Z is the slope that indicates
the rate of change of price as a function of quantity Cs ; all
scenarios have the same slope. Without loss of generality,
assume Y1 <Y2 < · · ·<YS. We will denote the expected value
of Ys by Y �

∑
s θsYs . The distribution of demand is common

knowledge to all agents.
• There are n identical firms wishing to sell electricity.
• For a given firm i in scenario s, we will denote the

predispatch quantity by qi , and any short-run change in
production by xi , s . Variable qi is a “here and now” decision
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made by the ISO and xi , s is a “wait and see” decision to
adjust production to meet demand. Thus a generator’s actual
production in scenario s is equal to qi +xi , s , which we denote
by yi , s .

• To produce yi , s , firm i will incur a cost of production
given by α(qi + xi , s)+ (β/2)(qi + xi , s)2 plus a deviation cost
(from the targeted qi production), (δ/2)x2

i , s . Here qi is the
expected dispatch of firm i, and qi + xi , s is the actual short-
run dispatch and δ > 0.

• As minimum marginal cost of generation should not be
more than maximum price of electricity, we assume

α 6 Ys ∀ s ∈ {1, . . . , S}.

• There is an ISOwho takes bids and determines dispatch
and prices according to the given market design.

• All agents have full information about costs and the
distribution of demand (scenarios and probabilities).

• We assume that the strategy space of each participant is
defined by their choice of linear supply function parameters
discussed under each market clearing mechanism.

Our assumptions on generators’ cost functions are
particularly critical to the analysis that follows, and
deserve further explanation. Generators face two dis-
tinct costs when generating electricity. If given suffi-
cient advance notice of the quantity they are to dis-
patch, the generator can plan the allocation of turbines
to produce that quantity most efficiently. This is what
wemean by a long-run cost function. The interpretation
of this is the lowest possible cost at which a generator
can produce quantity q. In electricitymarkets, however,
demand fluctuates at short notice, and the ISO may
ask a generator to change its dispatch at short notice.
In this case, generators may not have enough time to
efficiently reallocate their turbines. For example, many
thermal turbines take hours to ramp-up. Most likely,
the generator will have to adopt a less efficient pro-
duction method, such as running some turbines above
their rated capacity, which also increases the wear on
the turbines. Thus there is some inherent cost in devi-
ating from an expected predispatch in the short-run.
This cost can be incurred even if the requested devi-
ation is negative. We assume that the generator will
be unable to revert to the most efficient mode of pro-
ducing this quantity qi + xi , s in the short-run, so it
pays a penalty cost. Note that this imposes a positive
penalty cost upon the generator for making the short-
run change, even if the change is negative. This penalty
cost is additively imposed on top of the “efficient” cost
of producing at the new level. We call this cost the devi-
ation cost. Note that we assume the symmetric case in
which cost of generation and deviation is determined
through the same constant parameters (α, β, δ).
Our goal is to compare the outcomes of different

markets imposed upon this environment. To be able
to draw comparisons in different paradigms, we need

to examine the steady state behaviour of participants
under the different market clearing mechanisms. To
this end, we need to compute equilibria arising under
the different market clearing mechanisms. To make the
computations tractable, we will restrict the firms to
offer linear supply functions in the following sections
of this paper.

3. Two-Period Settlement (NZTS) Model
In this section, we will introduce a two-period market
that is inspired by the market clearing mechanism as
it operates currently in New Zealand. As explained in
the introduction, in the NZEM firms bid a step supply
function for a given half hour period. The bid is made
at least two hours in advance. Once gate closure occurs
(two hours in advance of any given period),the supply
function offers can not be changed. (This is at least in
part because of the fact that there is no capacity market
in the NZEM and the system operator may be faced
with a real possibility of curtailing demand if the gen-
erators were to change their bids in real time.) Themar-
ket will then be cleared six times, every five minutes
during the given half-hour period. Each five-minute
redispatch is computed with real-time demand, but
with the supply offer stacks that have been submit-
ted prior to gate closure.3 We simplify the situation by
assuming the market clears only twice; once after the
offers are submitted, but before demand is realized.
We call this the “predispatch” phase, which tells the
generators approximately how much they should pro-
duce. Once demand is realized, the same offers will
be used to determine actual dispatch in what we call
the “spot settlement.” The difference between predis-
patch and spot dispatch is a generator’s short-run devi-
ation, which is subject to potentially higher costs as we
described earlier. However, the ISO has no knowledge
of this cost and it is not explicitly stated in the gener-
ators’ bids. This cost can be indirectly reflected in the
supply functions the generators bid in.

3.1. Mathematical Model
Our simplifiedmodel for theNZTSmarket has two dis-
tinct stages: predispatch and spot. Following the large
body of literature on affine supply functions (see, e.g.,
Green 1996, Baldick et al. 2004) we will work with a lin-
ear demand curve and frame generator supply offers
as linear functions. Explicitly, each generator i bids a
supply function ai + bi qi before the predispatch market
to represent their quadratic costs. This supply function
is required to be increasing, i.e., the offered bi must sat-
isfy bi > ε > 0, where ε is the machine accuracy.4 Note
that unlike (Green 1996), we do not assume that the
intercept ai � 0. Following ourmain analysis, we briefly
present a special case where ai � 0 is required.
When generators lock in their offers, demand is

uncertain (inNewZealand this point in time is referred
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to as gate closure). The ISO will then use the genera-
tor’s bid twice: once to clear the predispatch market,
and once again after demand is realized to clear the
spot market. As in reality, in both the predispatch and
spot markets, the ISO aims to maximize social welfare,
assuming generators are bidding their true cost func-
tions. Since demand is unknown in predispatch, the
ISO will nominate (and use) an expected demand (and
will not consider the distribution of demand):

min
qi , i∈{1,...,n}

z , z �

n∑
i�1

[(
ai qi +

bi

2 q2
i

)
−

(
YQ − Z

2 Q2
)]

s.t.
n∑

i�1
qi −Q � 0 [ f ]. (1)

From this first settlement, the ISO can extract a forward
price f equal to the shadow price on the (expected
demand balance) constraint. f is not used for any set-
tlements as the predispatch quantity and prices are
merely a guide at this stage. Recall that the predispatch
quantity for generator i is denoted by qi . After pre-
dispatch is determined, true demand is realized, and
the ISO then clears the spot market (using the specific
demand scenario that has been realized) to maximize
welfare by solving (2):

min
yi , s

z , z �

n∑
i�1

[(
ai yi , s +

bi

2 y2
i , s

)
−

(
Ys Cs −

Z
2 C2

s

)]
s.t.

n∑
i�1

yi , s −Cs � 0 [ps]. (2)

Here again the ISO computes a spot price ps as the
shadow price on the constraint. (Note that we can
eliminate the constraint and substitute Cs in the objec-
tive, however, imposing this constraint enables the easy
introduction of the price as the shadow price attached
to the constraint.) The generator is not permitted to
change its bid after predispatch, but does face an addi-
tional deviation cost δ for its short-run deviation.

Note that in both ISO optimization problems (1)–(2)
we have dispensed with nonnegativity constraints on
the predispatch and dispatch quantity both, following
the convention of supply function equilibrium mod-
els (see, e.g., Klemperer and Meyer 1989, Bolle 1992),
in order to enable the analytic computation of equi-
libria. We will demonstrate that the resulting symmet-
ric equilibria of our NZTS market model will always
have associated nonnegative predispatch and dispatch
quantities.

Firm i’s profit in scenario s in this market is then
given by

ui , s(qi , yi , s)� ps yi , s −
(
αyi , s +

β

2 y2
i , s +

δ
2 (yi , s − qi)2

)
. (3)

3.2. Equilibrium Analysis of the Two-Period Market
In this section, we will present equilibria of the NZTS
market model. We will first compute the optimal dis-
patch quantities from the ISO’s optimal dispatch prob-
lems (1) and (2) for any number of players.Wewill then
embed these quantities in each generator’s expected
profit function and allow the generators to simulta-
neously optimize over their (linear) supply function
parameters to obtain equilibrium offers.

Proposition 1. Problem (1) is a convex program with a
strictly convex objective. Its unique optimal solution and the
corresponding optimal dual f are given by

f �
Y +ZA
ZB + 1 , qi � f Bi −Ai ,

where Ai � ai/bi , Bi � 1/bi , A �
∑n

i�1 Ai and B �
∑n

i�1 Bi .

Proof. Note that problem (1) has a single linear
constraint and that its objective is a strictly convex
quadratic as we have assumed that bi > 0 and Z > 0.
The problem therefore has a unique optimal solution
delivered by the first-order conditions provided below:

Q −
n∑

i�1
qi � 0, (4)

f −Y +ZQ � 0, (5)
− f + ai + bi qi � 0 i ∈ {1, 2, . . . , n}. (6)

Algebraic manipulation of Equations (5)–(6) will pro-
vide the results. �

Wenote that Proposition 1 (and the next proposition)
are similar to analysis in Green (1996, 1999), although
we allow for an intercept parameter in our model.

Proposition 2. For each scenario s, problem (2) is a convex
program with a strictly convex objective. Its unique optimal
solution and the corresponding optimal dual ps are given by

ps �
Ys +ZA
ZB + 1 , yi , s � ps Bi −Ai ,

where Ai , Bi , A, and B are defined in Proposition 1.

Proof. Problems (2) and (1) are structurally identical,
therefore the simple proof of Proposition (1) applies
again here. �

Remark 1. Note from the above that the predispatch
price (and quantity) are equal to the expected spotmar-
ket prices (and quantities, respectively). That is,

f �
S∑

s�1
θs ps . (7)

We will now compute the linear supply functions
resulting from the equilibrium of the TS market game
laid out in (1).
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3.2.1. Firm i’s Computations. In this section we will
focus on firm i’s expected profit function. Note that
using Equation (7) we obtain

ui � Es[ui , s]

�

S∑
s�1
θs

(
ps yi , s −

(
αyi , s +

β

2 y2
i , s +

δ
2 (yi , s − qi)2

))
.

Using Propositions 1 and 2, we can rewrite ui as a func-
tion of ai and bi . To find a maximum of ui (for a fixed
set of competitor offers) we appeal to a transformation
that will yield concavity results for ui . We consider ui
to be a function of Ai and Bi (instead of ai and bi).
Note that the transformation (Ai � ai/bi ,Bi � 1/bi) is a
one-to-one transformation.

Proposition 3. Let all competitor (linear) supply function
offers be fixed. The following maximizes ui (and is therefore
firm i’s best response):

Bi �
1+ZB−i

Z + β+ δ+Z(β+ δ)B−i

Ai �
α+ Bi(Zα− δ(Y +ZA−i))+ZαB−i

2Z + β+ZβB−i
,

where A−i �
∑

j,i A j and B−i �
∑

j,i B j .

Proof. We can show that ui is a concave function of Ai ,
assuming Bi is a fixed parameter. Here we have dis-
pensed with the expression for ui as a function of Ai
and Bi as it is long and rather complicated. We note
that ui is a smooth function of Ai and Bi and that

∂2ui

∂A2
i

�−
(1+ZB−i)(2Z + β+ZβB−i)

(1+ZB)2 6 0.

Let Bi be arbitrary but fixed. As ui is a concave func-
tion of Ai the first-order condition yields an expression
for A∗i(Bi), the value of Ai that maximizes ui (for the
fixed Bi):

A∗i(Bi)�
[
(1+ZB−i)(−Y + α−ZA−i +ZαB−i)
+ Bi(Z(Y +ZA−i)+ (Zα+ βY +ZβA−i)
· (ZB−i + 1))

]
·
[
(1+ZB−i)(2Z + β+ZβB−i)

]−1
.

We can embed A∗i(Bi) into ui and find the maximizer
in terms of Bi . This is enough to demonstrate that the
end result delivers the maximum of ui .
After embedding this value of A∗i into the profit func-

tion, the derivative with respect to Bi of ui is

∂ui

∂Bi
�
(Y2−∑

s θs Y2
s )(−1+ (Z+ β+ δ)Bi +Z(−1+ (β+ δ)Bi)B−i)

(1+ZB)3 .

The zero of this derivative is B∗i � (1+ZB−i)/
(Z + β+ δ+Z(β+ δ)B−i). Recall that Y �

∑
s θsYs , there-

fore Jensen’s inequality implies Y2−∑
s θsY2

s 6 0. Thus,
∂ui/∂Bi > 0, when Bi < Bi

∗, and ∂ui/∂Bi 6 0, when

Bi > B∗i . In other words, ui is a quasiconcave function
of Bi and is maximized at Bi � Bi

∗.
Note that evaluating A∗i at B∗i yields

A∗i �
α+ Bi(Zα− δ(Y +ZA−i))+ZαB−i

2Z + β+ZβB−i
. �

From the above, we can obtain the equilibrium of the
NZTS model by solving all best responses simultane-
ously. This gives the unique and symmetric solution
2S-EQM:

Bi � 2
[
− (n − 2)Z + β+ δ

+
√
(n − 2)2Z2 + 2nZ(β+ δ)+ (β+ δ)2

]−1 (8)

Ai �
α+ (nZα−Yδ)Bi

2Z + β+ (n − 1)Z(β+ δ)Bi
, (9)

or alternatively
2S-EQM:

bi �
1
2

[
− (n − 2)Z + β+ δ

+
√
(n − 2)2Z2 + 2nZ(β+ δ)+ (β+ δ)2

]
(10)

ai �
αbi + (nZα−Yδ)

2Zbi + βbi + (n − 1)Z(β+ δ) . (11)

As we discussed earlier, these equilibrium offers
yield nonnegative predispatch and dispatch quantities.
Below we formally state this result.

Proposition 4. The equilibrium predispatch and spot pro-
duction quantities of the firms in the NZTS market are non-
negative, i.e., qi > 0 ∀ i, and yi , s > 0 ∀ i , s where qi and yi , s
are the optimal solutions to problems (1) and (2), respec-
tively, using the equilibrium parameters from (10) and (11).

Proof. For the proof, please consult the e-compa-
nion. �

4. Stochastic Settlement Market
4.1. ISOSP Model
We now introduce the market model we will use to
analyze a stochastic settlement market. As discussed
in the introduction, the stochastic settlement market
contains only a single stage of bidding, but the mar-
ket clearing procedure takes into account the distri-
bution of future demand when determining dispatch.
The market works as follows. When the market opens,
demand is uncertain. Firms are allowed to bid their
“normal” cost functions (the cost of producing a given
output most efficiently) and a “penalty” cost function
that they would need to be paid to deviate in the short-
run. Since firms have quadratic cost functions, they can
bid their true costs by submitting a linear supply func-
tion. Each firm i chooses ai and bi to bid the linear
supply function ai + bi q, and di to bid the marginal
penalty cost applied to the deviation from predispatch
quantity. For a marginal deviation penalty, we look for
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a function that is zerowhen the dispatch is not changed
from the predispatch quantity, as well as positive to the
right and negative to the left of the predispatch. One of
the simplest forms this function can take is the linear
formwe have assumed.While the true marginal cost of
deviation for a station may be nonlinear, it is expected
to be smooth as it relates to engineering attributes such
as flow of water through an aperture. Therefore to the
first order, it can be approximated by a linear function.
Note that as with the NZTSmodel, these bids (ai , bi , di)
need not be their true values (α, β, δ). The offered bi is
required to be positive and di should be nonnegative.

After generators have placed their bids, the ISO com-
putes the market dispatch according to the stochas-
tic settlement model (outlined below). At this point
demand is still uncertain. The ISO chooses two key
variables. The first is the predispatch quantity for each
firm. This is the quantity the ISO asks each firm to
prepare to produce, namely, the predispatch quanti-
ties qi defined in Section 2. The second is the short-run
deviation for generator i under each scenario s. This
deviation is the variable xi , s defined in Section 2, rep-
resenting the adjustment made to firm i’s predispatch
quantity in scenario s. The ISO can choose both predis-
patch and short-run deviations simultaneously, while
aiming to maximize expected social welfare. The ISO
assumes that generators have bid their true costs.
In the final stage, demand is realized, and the ISO

will ask generators to modify their predispatch quan-
tity according to the short-run deviation for the par-
ticular scenario. Each generator ends up producing
qi + xi , s . Two prices are calculated during the course of
optimizing welfare. The first is the (shadow) price of
the predispatch quantities. We will denote this by f .
The second are the prices of each of the deviations, for
each of the scenarios. We will denote these by ps for
scenario s. Each generator is paid f per unit for its pre-
dispatch quantity qi , and ps for its deviations xi , s . Thus
in realization s, generator i makes profit equal to

ui , s(qi , yi , s)� ps yi , s −
(
αyi , s +

β

2 y2
i , s +

δ
2 (yi , s − qi)2

)
. (12)

The stochastic optimization problem solved by the
ISO can be represented as follows.5

ISOSP:

min
qi , xi , s

S∑
s�1
θs

( n∑
i�1

[
ai(qi + xi , s)+

(
bi

2

)
(qi + xi , s)2

+

(
di

2

)
x2

i , s

]
−

(
Ys Cs −

(
Z
2

)
C2

s

))
s.t.

∑
i

qi −Q � 0 [ f ]

Q +
∑

i
xi , s −Cs � 0 ∀ s ∈ {1, . . . , S} [θs ps],

where Q and Cs stand for the total predispatched quan-
tity and total consumption in scenario s, respectively.

Note that we could have eliminated the two equality
constraints. However, their dual variables inform the
market prices f and ps , respectively, so for clarity we
have left them in. Here ps is the probability adjusted
shadow price for the second stage.

Note that in the ISOSP, an estimate of a future distri-
bution is used. Khazaei et al. (2013) examine the effec-
tiveness of ISOSP in an empirical competitive setting.

4.2. Characteristics of the Stochastic
Optimization Problem

We begin by presenting a series of results that simplify
the set of solutions to the ISOSP problem. We start by
establishing technical lemmas that enable us to prove
that our ISOSP is equivalent to a two-period market
clearingmechanism similar toNZTS, with the essential
difference that now a deviation penalty is present in
the ISO’s dispatch in real time. These results drastically
simplify the subsequent analysis of firms’ behaviour in
equilibrium.

Lemma 1. In the stochastic settlement market clearing, the
expected deviation of firm i from predispatch quantity q∗i
is zero. That is, the optimal solution to ISOSP will always
satisfy ∑

s
θs x∗i , s � 0.

Proof. Let us assume q∗i and x∗i , s form ISOSP’s optimal
solution. Let us define for each i and s the quantity
ki , s � q∗i + x∗i , s , the total production of firm i in sce-
nario s. Note that Cs �

∑
i q∗i +

∑
i x∗i , s . Assume, on the

contrary, that there exists at least one firm j such that∑
s θs x∗j, s , 0. The optimal objective value of ISOSP is

then given by∑
i

∑
s
θs

(
ai ki , s +

bi

2 (ki , s)2
)
+

∑
i

∑
s
θs

di

2 (x
∗
i , s)2

+Ys

∑
i

ki , s −
Z
2

(∑
i

ki , s

)2

. (13)

Note that as ∑
s θs x∗j, s , 0, the term ∑

i
∑

s θs(di/2)(x∗i , s)2
is positive. Now, for a fixed i and ki , s given from above,
consider the problem

min
qi , xi , s

di

2

S∑
s�1
θs x2

i , s

qi + xi , s � ki , s ∀ s ∈ {1, . . . , S}.
(14)

This problem clearly reduces to the univariate problem

min
qi

S∑
s�1
θs(ki , s − qi)2 ,

which is optimized at

qi �

S∑
s�1
θs ki , s .
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We will now construct a new optimal solution for
ISOSP, with an improved objective value and hence
derive a contradiction. Define q̂i and x̂i , s by

q̂i �


q∗i , i , j

S∑
s�1
θs k j, s otherwise,

and

x̂i , s �

{
x∗i , s , i , j
k j, s − q̂ j otherwise.

By definition, q̂i + x̂i , s � q∗i + x∗i , s for all i and s.
It is easy to see that the quantities q̂i and x̂i , s yield
a feasible solution to ISOSP by satisfying ∑S

s�1 q̂i +

x̂i , s � Cs . Furthermore note that x̂ j, s � x∗j, s −
∑

s θs x∗j, s .
Hence ∑

s θs(x̂ j, s)2 <
∑

s θs(x∗j, s)2 since the expected
value of x̂ j, s is zero.

Now, the objective function evaluated at q̂i and x̂i , s
is given by∑

i

∑
s
θs

(
ai ki , s +

∑
i

∑
s
θs

di

2 (x̂i , s)2 +
bi

2 (ki , s)2
)

+Ys

∑
i

ki , s −
Z
2

(∑
i

ki , s

)2

.

This value is strictly less than the objective evaluated
at q∗i and x∗i , s (given by (13)), as we have already estab-
lished that ∑

i
∑

s θs(di/2)(x∗i , s)2 >
∑

i
∑

s θs(di/2)(x̂i , s)2.
This yields the contradiction that proves the result. �
Corollary 1. In the stochastic problem ISOSP, if q∗i +

x∗i , s > 0 is satisfied ∀ s ∈ {1, . . . , S} then q∗i > 0 will hold.
Proof. In Lemma 1 we established that ∑

s θs x∗i , s � 0.
Therefore there exists a scenario s′ such that x∗i , s′ 6 0.
Clearly then q∗i + x∗i , s′ > 0 implies q∗i > 0. �

Discussion. Lemma 1 is the crucial result that drives
the rest of our characterizations. This result hinges on
the fact that we penalize quadratic deviation from the
predispatch quantity. In the proof of Lemma 2, we
demonstrate that the second stage of ISOSP reduces to
selecting a contract point that minimizes the quadratic
deviation penalty function that is known to be the
mean of any distribution. For the quadratic penalty,
this is irrespective of the distribution. (It is possible to
also use an absolute value based deviation penalty and
require a symmetric demand distribution. When the
penalty function is an absolute value, the point of best
estimate is the median of the distribution. For a sym-
metric distribution, of course this reduces again to the
mean.) This model penalizes the deviations upward
and downward identically. Therefore the predispatch
point is optimized based on the mean demand sce-
nario. The reader may argue that allowing for dif-
ferent upward and downward penalties is more real-
istic. However, as Pritchard et al. (2010) show, such

allowance of asymmetric penalties can lead to system-
atic arbitrage by the ISO, where a generator may be
required to deviate upward “in every scenario” sim-
ply to increase expected welfare. This may be deemed
undesirable for a market clearing mechanism. For this
reason and to aid analytical computations, we have
confined our attention to the symmetric upward and
downward penalty case for this paper, which guaran-
tees systematic arbitrage will not occur. We now use
the above results to prove that the ISO’s optimization
problem can be viewed as a two-period settlement sys-
tem where unlike NZTS, the deviation penalties are
explicitly stated in the ISO’s problem in the second
period.

Lemma 2. The objective function of ISOSP is equivalent to
the following function, which is separable in the predispatch
and the spot market variables

z �

n∑
i�1

(
ai qi +

bi

2 q2
i

)
−Y

n∑
i�1

qi +
Z
2

( n∑
i�1

qi

)2

+

n∑
i�1

(
bi + di

2

S∑
s�1
θs x2

i , s

)
−

n∑
i�1

S∑
s�1
θsYs xi , s

+
Z
2

S∑
s�1
θs

( n∑
i�1

xi , s

)2

.

Proof. Substituting for Cs from constraints into the
objective function of ISOSP yield

z �

n∑
i�1

(
ai qi +

bi

2 q2
i

)
−Y

n∑
i�1

qi +
Z
2

( n∑
i�1

qi

)2

+

n∑
i�1

(
bi + di

2

S∑
s�1
θs x2

i , s

)
−

n∑
i�1

S∑
s�1
θsYs xi , s

+
Z
2

S∑
s�1
θs

( n∑
i�1

xi , s

)2

+

n∑
i�1

(
ai

S∑
s�1
θs xi , s

)
+

n∑
i�1

(
qi bi

S∑
s�1
θs xi , s

)
+

S∑
s�1
θs Z

n∑
i�1

n∑
j�1

qi x j, s .

We have split the objective in three parts above. Note
that the first part of the objective above is exclusively
a function of predispatch quantities qi and the sec-
ond only a function of the spot dispatches xi , s . The
third segment can be eliminated at optimality since in
Lemma 1 we proved that ∑S

s�1 θs x j, s � 0 for the optimal
choice of real-time dispatches. �

Note. We have therefore established that ISOSP
reduces to a two-period single settlement model very
similar to NZTS but with penalties di explicitly present
in the second period.

The rest of this section is devoted to deriving explicit
expressions for the solution of ISOSP. In the next sec-
tion we will use these expressions to arrive at best
response functions for the firms and subsequently in
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constructing an equilibrium for the stochastic market
settlement. To simplify the equations and arrive at
explicit solutions, we will transform the space of the
parameters of ISOSP (i.e., the firm decision variables),
much in the same way that we did in Section 3. If we
nowdefine Ri �1/(bi +di) and R�

∑
i Ri , ISOSP reduces

to minimizing the following:

n∑
i�1

(
Ai

Bi
qi +

1
2Bi

q2
i

)
−Y

n∑
i�1

qi +
Z
2

( n∑
i�1

qi

)2

+

S∑
s�1
θs

[ n∑
i�1

1
2Ri

x2
i , s −(Ys −Y)

n∑
i�1

xi , s +
Z
2

( n∑
i�1

xi , s

)2]
.

Note that as before (Lemma 2), the problem is sepa-
rable in qi’s and xi , s ’s, we can therefore solve the two
stages separately. Note also that the problem in each
stage is a convex optimization problem, therefore the
first-order conditions will readily produce the optimal
solution.

Proposition 5. If (q , x , f , p) represents the solution of
ISOSP, then we have

qi �
(Y +ZA)Bi

1+ZB
−Ai , (15)

xi , s �
(Ys −Y)Ri

1+ZR
, (16)

f �
Y +ZA
1+ZB

, ps �
Y +ZA
1+ZB

+
Ys −Y
1+ZR

.

Proof. For derivation of the expressions for the opti-
mal solution above from first-order conditions please
refer to the e-companion. �

Observe from the expression for f that this forward
price (paid on predispatch quantities) is independent
of any deviation costs in the spot market.

Corollary 2. In the solution of ISOSP, forward price is
equal to the expected spot market price.

Proof. Since Y �
∑

s θsYs , it is immediately obvious
that f �

∑
s θs ps as required. �

4.3. Equilibrium Analysis of the Stochastic
Settlement Market (ISOSP)

In Section 4.1 we presented firm i’s profit under sce-
nario s in Equation (12). In our market model, we
assume that all firms are risk neutral and therefore
interested only in maximizing their expected profit.
Firm i’s expected profit (using the results of Corol-
lary 2) is given by

ui � f qi +

S∑
s�1
θs

(
ps xi , s −

(
α(qi + xi , s)

+
β

2 (qi + xi , s)2 +
δ
2 x2

i , s

))
. (17)

The above expression for ui can be expanded and we
can observe that

ui � f qi −
(
αqi +

β

2 q2
i

)
+

S∑
s�1
θs

(
ps xi , s −

β+ δ

2 x2
i , s

)
− α

S∑
s�1
θs xi , s − βqi

S∑
s�1
θs xi , s .

Note that from Lemma 1, the generator would
know that for any admissible bid, the correspond-
ing expected deviation from predispatch quantities∑S

s�1 θs xi , s � 0. Therefore the expected profit for the
generator becomes

ui � f qi −
(
αqi +

β

2 q2
i

)
+

S∑
s�1
θs

(
ps xi , s −

β+ δ

2 x2
i , s

)
.

We can use the expressions obtained from Proposi-
tion 5 to write ui as follows:

ui �−
1
2 βA2

i +
Ai(−ZA+α+ZBα+ZAβBi +Y(−1+ βBi))

1+ZB

+
1

2(1+ZB)2(1+ZR)2

(
2(1+ZR)2(ZA+Y)

· (ZA+Y−(1+ZB)α)Bi −(1+ZR)2(ZA+Y)2βB2
i

+ (1+ZB)2Ri(−2+ (β+ δ)Ri)
(
Y2−

∑
s
θsY2

s

))
. (18)

Although this expression of the expected profit for the
generator is rather ugly, it does have the advantage that
upon differentiating with respect to Ri , all dependence
on Ai and Bi drops and we are left with

∂ui

∂Ri
�

((
Y2 −

∑
s
θsY

2
s

)
(−1+ (Z + β+ δ)Ri

+ZR−i(−1+ (β+ δ)Ri))
)
· 1
1+ZR3 , (19)

where R−i �
∑

j,i R j . The fact that this derivative is free
of Ai and Bi indicates that ui is separable in Ri and
(Ai ,Bi), that is

ui(Ai ,Bi ,Ri)� gi(Ai ,Bi)+ hi(Ri). (20)

Because of this natural separability, our equilibrium
analysis will focus on finding best responses in terms
of Ai , Ri , and Bi , very similar to the NZTS section.

Equation (20) enables us tomaximize ui bymaximiz-
ing gi and hi over (Ai ,Bi) and Ri , respectively. This is
helpful as we can establish quasiconcavity results for
gi and hi separately.
We start our investigations by examining gi . The full

expression for gi can be found in the e-companion.
Holding Bi fixed, note that

∂2 gi

∂A2
i

�−
(1+ZB−i)(2Z + β+ZβB−i)

(1+ZB)2 .
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Figure 1. (Color online) Two Views of the Graph of Function gi
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Note. Note that the optimal value of gi is obtained along a continuum, for any value of Bi .

This demonstrates that gi is concave in Ai for any
fixed Bi . Furthermore, for any fixed Bi , we can use the
first-order conditions to find A∗i(Bi), i.e., the value of Ai
that maximizes gi(Ai ,Bi) for the fixed Bi :

A∗i(Bi)�
[
(1+ZB−i)(α−ZA−i +ZαB −Y)
+ (Y +ZA−i)(Z + β+ZβB−i)Bi

]
·
[
(1+ZB−i)(2Z + β+ZβB−i)

]−1
. (21)

To find the optimal value for gi , we substitute the
expression for A∗i(Bi) in gi(A∗i(Bi),Bi). Surprisingly,
upon undertaking this substitution, it can be observed
that gi(A∗i(Bi),Bi) is a constant. Figure 1 depicts gi .
To uncover the intuition behind this feature of gi , we

can offer the following mathematical explanation. We
observe that

∂gi

∂Ai
�

[
− (1+ZB−i)(Y − α+ZA−i + (2Z + β)Ai

+ZB−i(−α+ βAi))
]
·
[
(1+ZB)2

]−1

+
[
(Z(Y + α)+Yβ+Y(Zα+Yβ)B−i

+ZA−i(Z + β+ZβB−i))Bi

]
·
[
(1+ZB)2

]−1
,

and that
∂gi

∂Bi
�−Y +ZA

1+ZB
·
∂gi

∂Ai
.

Therefore, stationary conditions enforced in Ai will
also imply stationarity in Bi .
As gi(A∗i(Bi),Bi) is constant for any Bi > 0, for any

value of Bi > 0, the tuple (A∗i(Bi),Bi) is an argmax of gi
for any positive Bi . Let Di denote 1/(di + ε). Recall that
according to our initial assumptions, we have bi > ε,
thus Ri 6 Di .
The following analysis on hi will explain how opti-

mal Ri is constrained by the value of Di .

Proposition 6. Suppose that R−i is fixed. Then hi is opti-
mized at

R∗i �min
{

Di ,
1+ZR−i

Z + β+ δ+Z(β+ δ)R−i

}
.

Proof. Note that at

R̂i �
1+ZR−i

Z + β+ δ+Z(β+ δ)R−i
, (22)

the derivative ∂hi/∂Ri � ∂ui/∂Ri vanishes. Also recall
from Jensen’s inequality that Y2 6

∑
s θsY2

s . It can there-
fore be seen from (19) that this derivative is positive for
Ri < R̂i and negative for Ri > R̂i .
Recall further that the definitions of Di and Ri

require Ri 6Di . Therefore, in optimizing hi , we need to
enforce this constraint and we obtain

R∗i �min
{

Di ,
1+ZR−i

Z + β+ δ+Z(β+ δ)R−i

}
. �

We now return to ui , the expected profit function
for firm i. As ui(Ai ,Bi ,Ri) � gi(Ai ,Bi)+ hi(Ri), we can
start by obtaining the maximum value of gi attained
at a point (A∗i(Bi),Bi) for any positive Bi . Subsequently,
we proceed to optimize hi(Ri). Proposition (6) readily
delivers the optimal Ri . We have therefore proved the
following theorem.

Theorem 1. The best response of firm i, holding competitor
offers fixed, is to offer any di for which we have

1
di + ε

>
1+ZR−i

Z + β+ δ+Z(β+ δ)R−i
.

For any such di , optimal ai and bi can be computed from the
following equations:

Ri �
1+ZR−i

Z+ β+ δ+Z(β+ δ)R−i
,

Ai �
[
(1+ZB−i)(α−ZA−i +ZαB−Y)+ (Y+ZA−i)
· (Z+ β+ZβB−i)Bi

]
·
[
(1+ZB−i)(2Z+ β+ZβB−i)

]−1
.

Theorem 1 indicates that the game hasmultiple (infi-
nite) symmetric equilibria.
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4.4. Equilibrium Analysis of the Stochastic
Settlement Market with Fixed Deviation
Costs (ISOSP-FD)

Following Theorem 1, we are presented with an
opportunity to assess a market clearing mechanism
where the strategy space of the agents is reduced in
dimension. Instead of bidding in parameters (ai , bi , di),
in this variation the firms offer a supply function
parametrised by (ai , bi) and the deviation penalty is
fixed (and reflected in market clearing), by the ISO. We
call this variation ISOSP-FDwith di � dSO and known to
the firms prior to the start of bidding. We show that for
a range of dSO starting anywhere above zero, building
up to the true deviation cost and even beyond, the total
welfare increases, in comparison to the NZTS model.
This in turn demonstrates that having a deviation cost
parameter, even though it may not be quite accurate,
can enhance efficiency.

Proposition 7. The unique symmetric equilibrium quanti-
ties of ISOSP-FD are as follows:

bi �max{ε, (−Z(n − 2)+ β+ δ+
√

Z
2
(n − 2)2

+ 2Zn(β+ δ)+ (β+ δ)2) · 1
2 − dSO} (23)

ai �
[
α−Y + Bi(−Z(Y(n − 2) − (2n − 1)α)+Yβ

+Z(n − 1)(Znα+Yβ)Bi)
]

·
[
Bi(Z(n + 1)+ β+Y(n − 1)(Zn + β)Bi)

]−1
. (24)

The proof of the above proposition is contained in
the e-companion.

Let us define

d̂ �
−Z(n−2)+ β+ δ+

√
Z2(n−2)2 +2Zn(β+ δ)+ (β+ δ)2

2 .

Theorem 2. For ISOSP-FD with dSO 6 d̂ − ε, as the num-
ber of participating firms increases, they tend to offer their
true cost parameters. In other words,

lim
n→∞

ai � α

lim
n→∞

bi + dSO
� β+ δ.

When the fixed parameter dSO is chosen to be equal to δ,
limn→∞ bi � β.

Proof. The equations are simply derived from the
equilibrium values of ai and di given in Proposi-
tion 7. �

Theorem 2 shows that the ISOSP-FDmarket is behav-
ing competitively in the sense that when number of
firms increases, they offer their true cost parameters.

One important feature of the equilibrium values are
the nonnegativity of the predispatch and dispatch. This
is important, because we neglected the nonnegativity
constraints in ISOSP in the first place.

Proposition 8. Let (q∗ , x∗) represent an equilibrium of
ISOSP-FD. Then the following inequalities hold:

∀ i , s: q∗i + x∗i , s > 0
∀ i: q∗i > 0.

The proof of the above proposition is contained in
the e-companion.

Though, the equilibrium predispatch and dispatch
are nonnegative, one might raise an objection that a
gamewithout the nonnegativity constraints embedded
in the ISO’s optimization problem, is different from
the original game. Therefore, there is no assurance
the found equilibrium is also the equilibrium of the
original game. The following theorem states that the
obtained equilibrium values are also the equilibrium of
the original game with nonnegativity constraints. The
proof of this theorem is quite lengthy and consists of
several technical lemmas.

Theorem 3. The equilibrium of the symmetric stochastic
settlement game without the nonnegativity constraints in
ISOSP-FD is also the equilibrium of the stochastic settlement
game with the nonnegativity constraints.

Proof. Please refer to the e-companion for the proof of
this theorem. �

5. Comparison of the Two Markets
We are interested in the performance of the two mar-
ket clearing mechanisms ISOSP-FD and NZTS, under
strategic behaviour. Our criterion for comparing the
two models is social welfare. Social welfare is defined
as the sum of the consumer and producer welfare and
in our market environments this reduces to

W�

S∑
s�1
θs

(
Ys

( n∑
i�1

yi , s

)
− Z

2

( n∑
i�1

yi , s

)2)
−

S∑
s�1
θs

( n∑
i�1

(
αyi , s +

β

2 yi , s
2
+
δ
2

(
yi , s − qi

)
2
))
. (25)

Note that the different social welfare values WSS (for
the ISOSP-FD) and WNZTS (for the NZTS mechanism)
are found through the same formula, however with the
different equilibrium yi , s variables.

Recall that following Theorem 1 the choice of dSO

was delegated to the ISO. The next theorem establishes
that when firms are bidding strategically, the stochastic
settlement market dominates the NZTS market for any
choice of dSO ∈ (0, d̂).

Theorem 4. The social welfare of ISOSP-FD is an increas-
ing function of the parameter dSO, and it is higher than the
NZTS social welfare, provided dSO is chosen less than or
equal to the threshold value d̂ − ε.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

32
.1

92
.2

1]
 o

n 
05

 O
ct

ob
er

 2
01

7,
 a

t 1
4:

07
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Khazaei, Zakeri, and Oren: Market Clearing Mechanisms Under Uncertainty
1158 Operations Research, 2017, vol. 65, no. 5, pp. 1147–1164, ©2017 INFORMS

Proof. To prove the proposition, we show when
dSO � 0, thenWSS

�WNZTS. We then demonstrate WSS is
an increasing function of dSO for 0 6 dSO 6 d̂ − ε, and
therefore, WSS > WNZTS, when dSO 6 d̂ − ε (note that
WNZTS is a constant and does not change with dSO).
When dSO � 0, Equations (24), (9), and (8) yield

that the equilibrium quantities are identical in the
stochastic settlement and two-period settlement mar-
kets. That is,

BSS
i � BNZTS

i , ASS
i � ANZTS

i , RSS
i � BSS

i .

Here we can simplify the expressions for yi , s and qi
(from Propositions 1, 2, and 5) to obtain

qSS
i � qNZTS

i �
YBi −Ai

1+ZB
,

ySS
i , s � yNZTS

i , s �
Ys Bi −Ai

1+ZB
.

Therefore social welfare of these models (Equa-
tion (25)) are the same provided dSO � 0.We can rewrite
the social welfare expression (25) as

W�

S∑
s�1
θs

(
Ys

( n∑
i�1

yi , s

)
− Z

2

( n∑
i�1

yi , s

)2

−
n∑

i�1

(
αyi , s +

β

2 yi , s
2
+
δ
2 xi , s

2
))
. (26)

Note that the expression for social welfare is the
same for both models and only depends on the corre-
sponding quantities dispatched from each model (i.e.,
ySS

i , s versus yNZTS
i , s , etc.).

Note that, according to the results of Proposition 7,
for 06 dSO 6 d̂−ε, we have bi � d̂−dSO, and therefore Ri
has a constant value of 1/d̂, while Bi is a function of dSO.
Furthermore, note that xSS

i , s is independent of dSO, and
therefore

∂WSS

∂dSO �
1

(d̂ − dSO)2
∑
i , s

∂WSS

∂ySS
i , s

∂ySS
i , s

∂Bi
. (27)

On the other hand, taking the derivative of ySS
i , s with

respect to Bi we obtain

∂ySS
i , s

∂Bi
�

(Y − α)(n − 1)Z2

(Z + nZ + β+ (n − 1)Z(nZ + β)Bi)2
> 0.

The right-hand side is readily seen to be nonnegative
as Y > α and n > 1.
As ∂ySS

i , s/∂Bi is independent of firm i and scenario s
(note that Bi � (d̂ − dSO)−1), we can rearrange (27) and
obtain

∂WSS

∂dSO �
1

(d̂ − dSO)2
∂ySS

i , s

∂Bi

∑
i , s

∂WSS

∂ySS
i , s

.

On the other hand, differentiating (26) yields

∂WSS

∂ySS
i , s

� θs(Ys − α− (Zn + β)ySS
i , s).

Hence∑
s

dWSS

dySS
i , s

� Y − α− (Zn + β)qSS
i

�
bZ(Y − α)

Z(n − 1)(nZ + β)+ b((n + 1)Z + β) > 0.

Therefore we can conclude that
∂WSS

∂dSO > 0. �

Note that we can easily show that

d̂ > β+ δ,

and therefore, if the fixed di is chosen equal to δ then
WSS >WNZTS.
Proposition 9. The social welfare of ISOSP-FD is maxi-
mized if the parameter dSO is chosen equal to the threshold
value d̂ − ε.
Proof. We have established (Theorem 4) that ∂WSS/
∂dSO > 0, for 0 6 dSO 6 d̂ − ε. To prove this proposi-
tion, we demonstrate that for dSO > d̂ − ε, we have
∂WSS/∂dSO 6 0. Under this condition, according to the
equilibrium formulae, we have bi � ε, and therefore,
changing dSO only modifies the equilibrium value of Ri
(and not Ai and Bi). Therefore, we have

∂WSS

∂dSO �− 1
(ε+ dSO)2

∑
i , s

[
∂WSS

∂ySS
i , s

∂ySS
i , s

∂Ri
+
∂WSS

∂xSS
i , s

∂xSS
i , s

∂Ri

]
. (28)

Note that qi is independent of Ri , and hence

∂ySS
i , s

∂Ri
�
∂xSS

i , s

∂Ri
�

Ys −Y
(1+ nZRi)2

.

On the other hand, differentiating (26) yields

∂WSS

∂ySS
i , s

� θs(Ys − α− (Zn + β)ySS
i , s),

∂WSS

∂xSS
i , s

� θs(−δxSS
i , s).

Therefore, we conclude

∂WSS

∂dSO �− 1
(ε+ dSO)2

∑
i , s

∂WSS

∂ySSi , s

∂ySS
i , s

∂Ri
+
∂WSS

∂xSS
i , s

∂xSS
i , s

∂Ri

�− 1
(ε+ dSO)2

∑
i , s

θs(Ys −Y)
(1+ nZRi)2

· (Ys − α− (Zn + β)ySS
i , s − δxSS

i , s)

�− 1
(ε+ dSO)2(1+ nZRi)2

∑
i , s
θs(Ys −Y)

· (Ys − α− (Zn + β)ySS
i , s − δxSS

i , s).
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To prove the theorem, we show Ki �
∑

s θs(Ys − Y) ·
(Ys − α − (Zn + β)ySS

i , s − δxSS
i , s) > 0 for any i. Note that

ySS
i , s � qSS

i + xSS
i , s , and thus

Ki �
∑

s
θs(Ys −Y)(Ys − α− (Zn + β)ySS

i , s − δxSS
i , s)

�
∑

s
θsY

2
s −Y2 − (α+ZnqSS

i + βqSS
i )

∑
s
θs(Ys −Y)

− (Zn + β+ δ)
∑

s
θs(Ys −Y)xSS

i , s .

Replacing ∑
s θs(Ys −Y) with zero and inputting the

value of xSS
i , s � ((Ys −Y)Ri)/(1+ nZRi), we obtain

Ki �
∑

s
θsY

2
s −Y2−(Zn + β+ δ)

∑
s
θs(Ys −Y) (Ys −Y)Ri

1+ nZRi

�

(∑
s
θsY

2
s −Y2

) (
1−
(Zn + β+ δ)Ri

1+ nZRi

)
�

(∑
s
θsY

2
s −Y2

) (
1−(β+ δ)Ri

1+ nZRi

)
.

As discussed earlier, β + δ < d̂, and thus 0 < β + δ <
d̂ 6 dSO < dSO + ε. If we multiply this by the positive
quantity Ri � 1/(dSO+ ε), we obtain (β+ δ)Ri < 1. Thus,
we have

1− (β+ δ)Ri

1+ nZRi
> 0.

Also, according to Jensen’s inequality (or based on
the nonnegativity property of variance), we can con-
clude var(Ys) �

∑
s θsY2

s − Y2 > 0. These inequalities
indicate that Ki > 0, and therefore, we can conclude

∂WSS

∂dSO �− 1
(ε+ di)2(1+ nZRi)2

∑
i

Ki 6 0. �

Example 1. Consider a market with two symmetric
generators as defined in Table 1.

Figure 2 shows how the social welfare of the stochas-
tic settlement mechanism is affected by the choice of
dSO. It also demonstrates that for dSO < d̂ and even
beyond, the stochastic settlement mechanism has a
higher equilibrium social welfare in comparison with
the NZTS mechanism. Note that at dSO � d̂, the equi-
librium bi is set to ε and social welfare is maximized.
For the rest of this example, we assume that the ISO
chooses dSO � 0.5, which ensures higher equilibrium

Table 1. The Market Environment for the Example

Parameter Value

α, β, δ 50, 1, 0.5
Y1, Y2, Z 100, 150, 1
θ1, θ2 0.5, 0.5
n 2

Figure 2. (Color online) The Effect of dSO on the Social
Welfare of the Stochastic Settlement Model and on How It
Compares to the Two Period Settlement Mechanism
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Note. The thicker line traces ISOSP-FD welfare whereas the thinner
line traces the NZTS welfare.

social welfare from the stochastic settlement in com-
parison with the NZTS mechanism.

Another interesting experiment is to investigate the
effect of β and δ on these mechanisms.

Figures 3–5 compare the ISOSP-FD and the NZTS
mechanisms for this example, however for different β
and δ values. A first observation is that the stochastic
settlement mechanism increases social and consumer
welfare and decreases producer welfare in comparison
with the two settlement mechanism.

It is also interesting to investigate the effect of com-
petition on these mechanisms. To do so, we can test the
effect of number of firms on these mechanism.

Figure 6 shows the difference in the social welfare
of our two mechanisms as a function of n. It shows
that when the number of generators increases, the per-
formance of the stochastic and two-period settlement
mechanisms converge.

6. Robustness to Modelling Assumptions
In this section, we investigate the robustness of our
results to two important model assumptions.

6.1. The Case of Asymmetric Generators
Thus far, we have derived the analytical expressions for
a symmetric equilibrium. We have also proved that the
stochastic settlement market always improves social
welfare under this symmetric equilibrium. We now
consider a duopoly with two asymmetric generators.
As outlined in the introduction of this paper, there
are a number of papers that are relevant to the work
presented in this paper. However, none of the exist-
ing papers deals with the short-term penalty costs in
a two-period market clearing paradigm. Furthermore,
the simplification techniques that we have employed to
derive analytical expressions for our symmetric case no
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Figure 3. (Color online) Social Welfare of ISOSP-FD and NZTS for Different β and δ Values
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Note. The thicker lines trace ISOSP-FD welfare while the thin lines trace the NZTS welfare.

Figure 4. (Color online) Producer Welfare of ISOSP-FD and NZTS for Different β and δ Values
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Note. The thick lines trace ISOSP-FD producer welfare while the thin lines trace NZTS producer welfare.

Figure 5. (Color online) Consumer Welfare of ISOSP-FD and NZTS for Different β and δ Values
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Note. The thick lines trace ISOSP-FD consumer welfare while the thin lines trace NZTS consumer welfare.

longer apply here because of assumption of asymme-
try. At this point, we use a computational method laid
out in Section 6.1.3 to construct an equilibrium of our
asymmetric game. In what follows, we will remind the
reader of market assumptions, then restate the ISO’s
market clearing problem before proceeding to equilib-
rium computations.

6.1.1. The Market Environment in the Asymmetric
Case. This environment is very similar to the setup for

the symmetric case. It has the following distinguishing
features.

• The generators are no longer symmetric. To make
the examples computationally tractable, we focus on
two generator examples.

• We use the same form of long-run and short-run
cost functions as the symmetric case. Here however, the
firms are no longer identical and the cost parameters
αi , βi , and δi depend on the firm i.
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Figure 6. (Color online) Social Welfare of the Two-Period
Settlement Mechanism Converges to That of the Stochastic
Mechanism When n Increases
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Notes. Competition increases with a bigger market. The thick line
traces ISOSP-FD welfare while the thin line traces NZTS welfare.

6.1.2. Models. The ISO’s optimizationproblem is simi-
lar to the symmetric case, however Theorem8no longer
applies in the asymmetric case. Therefore to ensure
the nonnegativity of the equilibrium, both for the two-
periodsettlementand the stochasticprogrammingmar-
ket clearing mechanisms, we need to enforce nonnega-
tivity in the ISO’s problem. Thus, the predispatch prob-
lem of the ISO in the (asymmetric) NZTSmechanism is

PDATS: min
q ,Q

z , z �

n∑
i�1

(
ai qi +

bi

2 q2
i

)
−

(
YQ − Z

2 Q2
)

s.t.
∑

i
qi −Q � 0, [ f ]

qi > 0, ∀ i. (29)

The ISO’s spot market optimization problem for sce-
nario s is

SATS(s): min
ys ,Cs

z , z�
n∑

i�1

(
ai yi ,s+

bi

2 y2
i ,s

)
−

(
Ys Cs−

Z
2 C2

s

)
s.t.

∑
i

yi ,s−Cs�0, [ps]

yi ,s>0, ∀ i. (30)

Similarly, the stochastic optimization problem of the
ISO in the stochastic settlement mechanism can be rep-
resented as

SATS: min z , z�
S∑

s�1
θs

( n∑
i�1

[
ai(qi+xi ,s)+

bi

2 (qi+xi ,s)2

+
di

2 x2
i ,s

]
−

(
Ys Cs−

Z
2 C2

s

))
s.t.

∑
i

qi−Q�0, [ f ]

Q+
∑

i
xi ,s−Cs�0, ∀s , [ps]

qi+xi ,s>0, ∀ i ,s .

6.1.3. EquilibriumComputations. To find aNash equi-
librium to our games, we use a dynamic process. The

idea is to allow each participant in turn to update its
strategies, assuming the strategy set of the other par-
ticipants is fixed. If this diagonalization process termi-
nates with no participant willing to deviate from its
last strategy, then we have arrived at a Nash equilib-
rium. Note that by embedding the optimality condi-
tions of the market clearing problems (for the NZTS,
or the stochastic programming market clearing), the
generator optimization problem becomes nonconvex
and requires solving to global optimality. To do this,
we have used the global solver of LINGO. The global
solver of LINGO guarantees the optimality of its final
solution using a branch-and-bound approach. Here a
sequence of piecewise convex relaxations of the origi-
nal (nonconvex) problem are solved. The convex relax-
ations are derived using bounds on the variables. If
the optimal solution of the relaxed problem is feasible
for the original problem, it is also the optimal point
of the original problem. If not, further enhancement is
made through dividing up the domain of the objective
function and creating more accurate, piecewise con-
vex functions on each part of the domain. The process
of branching continues until all branches end with an
optimal point. Note that user defined tolerances on the
splitting procedure make this method a finite process.
For more information about the mathematics behind
this global solver, see Lin and Schrage (2009). The tol-
erance that we have used, as the minimum acceptable
difference between best response strategies of firms in
different turns, is of order of 10−10.
6.1.4. Sensitivity to Different Cost Structures (i.e.,
Generation Technologies). Different generation tech-
nologies have different structure in their cost func-
tions, e.g., a particular generation technologymay have
a high generation cost but a low cost for fast devia-
tion and another generator might be the opposite. In
this section, we analyze a market with two asymmet-
ric generators with various cost patterns (different lay-
outs of αi , βi , and, δi). Without loss of generality we
call the generator with the lower αi value generator
1 and the other generator 2. We then design different
experiments with different possibilities for βi and δi
(e.g., β1 > β2, β1 < β2, etc.). For each of these layouts, we
consider two cases for dSO: dSO � mini{δi} and dSO �

maxi{δi}. Consider a market with two demand sce-
narios with parameters given in Table 2. Table 3 sum-
marizes the difference between the equilibrium val-
ues of the SFSP-FD and NZTS mechanisms for each of
these experiments. According to these results, SFSP-FD
results in lower prices, profit, and producer welfare,

Table 2. Scenarios and Demand

Scenarios θ Y

1 0.5 100
2 0.5 150
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Table 3. Difference in the Equilibrium Values of the SFSP-FD and NZTS (i.e., SFSP-FD−NZTS) Under Asymmetry
Assumption and Different Cost Patterns

Ex. Gen dSO f p(s1) p(s2) Profit CW PW SW

1 1 0.001 −0.0057 −0.01 −0.01 −0.19 0.48 −0.30 0.18
2 −0.11

2 1 0.001 −0.014 −0.01 −0.02 −0.58 1.22 −0.81 0.41
2 −0.23

3 1 0.5 −2.58839 −2.59 −2.59 −67.40 218.43 −119.41 99.02
2 −52.00

4 1 0.001 −0.00775 −0.01 −0.01 −0.23 0.64 −0.37 0.27
2 −0.14

5 1 0.001 −0.02637 −0.03 −0.03 −0.95 2.16 −1.05 1.10
2 −0.10

6 1 0.5 −2.4747 −2.48 −2.47 −58.07 202.06 −140.63 61.44
2 −82.56

7 1 0.5 −3.55014 −3.55 −3.55 −160.97 305.33 −231.03 74.30
2 −70.07

8 1 0.5 −3.99094 −3.99 −3.99 −91.25 348.13 −174.46 173.67
2 −83.21

9 1 0.5 −3.6365 −3.64 −3.64 −97.94 305.61 −200.01 105.60
2 −102.07

10 1 0.5 −3.72095 −3.72 −3.72 −89.78 311.02 −282.17 28.86
2 −192.38

and higher consumer and social welfare in comparison
with the NZTS mechanism.
6.1.5. Sensitivity to dSO. To analyze the sensitivity of
our results to the value of dSO, we focus on the exper-
iment in Section 6.1.4 with the cost parameters listed
in Table 4. To compare the stochastic settlement mech-
anism with the NZTS, we find the equilibrium values
of the SFSP-FD mechanism on a range of different val-
ues for dSO. The equilibrium values of the two-period
single settlement mechanism and the stochastic settle-
ment mechanism for different bs are listed in Table 5.

This table indicates that our proven results of the
symmetric case are expected in this case as well.
Firstly, SFSP-FD yields higher social welfare for dSO ∈
(0,maxi{δi}). Secondly, socialwelfare is increasingwith
respect to dSO in this range and reaches its maximum
valueat amuchhigher level of dSO (somewherebetween
2 and 3 in this example). After this point, social welfare
starts to dropwith higher dSO values and ends up lower
than that of the NZTS mechanism for very large values
of dSO. The third similarity is that generators submit b �

εwhen dSO is larger than a threshold value.

6.2. Restriction to the Case of Supply Functions
with Intercept Zero

The model originally used by Green (1996) restricted
the linear supply offers to have an intercept at zero.

Table 4. Cost Function of the Generators

Gen α β δ

1 0 0.001 0.001
2 10 1 0.5

We went through the exercise of constructing NZTS
and ISOSP equilibrium results when supply functions
complywith the zero intercept rule (note that this elim-
inates one variable from the decision space of the gen-
erators). For this case, we restricted the model to a
duopoly. The methodology we have used for this case
follows that of the general case. For each market clear-
ing mechanism we establish the values of qi , f , xi , s ,
and ps as before. Then we obtain the expected util-
ity expressions and establish quasiconcavity results for
each case following the same lines of argument used in
the previous sections.

When restricted by the zero intercept condition, and
responding to the opponent restricted by the same con-
dition, the best reply and hence equilibrium values
change. Furthermore, we find that in the ISOSP case,
we have a unique (symmetric) equilibrium.An interest-
ing observation here is that allowing one more degree
of freedom, by the choice of an intercept, leading to a
continuum of equilibria, leads the ISO to acknowledge
a deviation cost (penalty) for the participants (in efforts
to improve welfare). As we observed, for any choice
of deviation penalty in (0, δ), the welfare of ISOSP is
improved over NZTS. This is no longer the case for the
Green type linear supply functions. That is, the welfare
difference between NZTS and ISOSP can be positive or
negative. Specifically, if we fix β � 2.0, δ � 4.0, and note
WNZTS −WSS by TWD,we find the following.

Y � 5 Y � 1.25
σ2

Y � 0.25 σ2
Y � 0.0625

Z � 0.5 Z � 0.125
TWD�−4.26892 TWD� 1.54577
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Table 5. Equilibrium Values of SFSP-FD for Different Levels of dSO in Comparison with the Equilibrium Values of NZTS

Gen dSO a b b + d CW PW SW

1 0.0001 −0.0569 0.6563 0.6564 3,688.9 3,092.4 6,781.3
2 0.0001 −1.0159 1.8962 1.8963
1 0.001 −0.0078 0.6554 0.6564 3,689.3 3,092.1 6,781.4
2 0.001 −1.0042 1.8953 1.8963
1 0.01 0.4858 0.6464 0.6564 3,693.3 3,089.5 6,782.8
2 0.01 −0.8876 1.8863 1.8963
1 0.1 5.4164 0.5565 0.6565 3,735.6 3,060.9 6,796.5
2 0.1 0.2343 1.7963 1.8963
1 0.5 27.2341 0.1566 0.6566 3,993.3 2,861.7 6,855.0
2 0.5 3.7615 1.3955 1.8955
1 2 15.8928 ε 2 6,027.3 1,782.8 7,810.0
2 2 14.9124 0.1667 2.1667
1 3 15.7103 ε 3 6,022.1 1,769.4 7,791.5
2 3 15.7103 ε 3
1 10 36.2862 ε 10 3,943.7 2,692.3 6,636.1
2 10 36.2862 ε 10
1 100 36.2862 ε 100 3,935.2 2,620.8 6,556.0
2 100 36.2862 ε 100
1 NZTS −0.0622 0.6567 NA 3,688.0 3,092.7 6,780.7
2 NZTS −1.0199 1.8964 NA

7. Conclusion
In this paper, we set up a simple modelling environ-
ment in which we were able to compare the New
Zealand inspired two-period single settlement mar-
ket clearing mechanism against a stochastic settlement
auction, which reduces to another two-period single
settlement auction with explicit penalties of deviation,
therefore different from the NZTS model. We were
able to model firms’ best responses in these markets,
and so find equilibrium behaviour in each. We find
that in our symmetric models, the ISOSP-FD auction
provably dominates the NZTS auction when measur-
ing expected social welfare.
To test the robustness of our results to the mod-

eling assumptions, we extended our analysis to two
other cases. For the case of asymmetric generators,
ISOSP-FD outperforms NZTS (assuming that the devi-
ation parameter is chosen appropriately). However, the
same results cannot be replicated for a restrictedmodel
where affine offers are confined to have intercept zero,
and we provide a case for which NZTS has a better
performance.

Endnotes
1 Insofar as using these estimates to make an offer, the information is
only useful up to gate closure as thereafter offers can not be changed.
There is no capacity market in the NZEM, therefore it is necessary
to lock in generation offers well ahead of time to avoid a situation
where demand must be curtailed involuntarily.
2The current financial settlement in the NZEM is based on ex post
prices that are computed with average demand over a period. Con-
strained on and off payments are used to ensure sufficient payment
is made to the generators. However the Electricity Authority is now
considering real-time pricing and is in consultation with the stake-
holders.

3Within this five-minute period a frequency keeping generator will
match any small changes in demand. We ignore this aspect of the
market, as frequency keeping is purchased through a separate mar-
ket and until recently was procured through annual contracts.
4While it may be tidier from an exposition perspective to allow
for tranche offers (with fixed price and maximum quantity), such
a model would lead to maximum generation constraints, and their
dual multipliers, in the ISO’s problem. This will in turn impede
obtaining an analytical equilibrium expression.
5This is a modified version of Pritchard et al. problem. There is
only one node and thus no transmission constraints, and demand is
elastic.
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1 Proposition 4

Proposition. The equilibrium pre-dispatch and spot production quantities of the
firms in the NZTS market are non-negative, i.e. qi ≥ 0 ∀i, and yi,s ≥ 0 ∀i, s
where qi and yi,s are the optimal solutions to problems (1) and (2) respectively
using the equilibrium parameters from (10) and (11) from the main paper.

Proof. To prove the proposition, we first show the equilibrium price intercept of
the supply function of generators (i.e. ai = Ai

Bi
) is less than the price intercept

of the demand function (i.e. Y and Ys). Then we show this property entails the
non-negativity of equilibrium quantities.

Substituting Ai and Bi from Proposition 3 into ai = Ai
Bi

, and then taking
the derivative of ai with respect to Z, we achieve

∂ai

∂Z
=

2δ
(
(n − 2)2Z + 2k + n(β + δ + k)

)
(Y − α)

k((n + 2)Z + β − δ + k)2
,

where k =
√

(n − 2)2Z2 + 2nZ(β + δ) + (β + δ)2. Because n ≥ 2, Z > 0,
β ≥ 0, δ ≥ 0, and α ≤ Y , we have

∂ai

∂Z
≥ 0. (1)

On the other hand, taking the limit of ai as Z approaches infinity, we obtain

lim
Z→∞

ai = α. (2)

Equations (1) and (2) yield

ai ≤ α.

1



This together with assumption α ≤ Ys ,∀s yields

ai ≤ Ys ∀i, s. (3)

Using ai = Ai
Bi

, we can rewrite equation (3) as

BiYs − Ai ≥ 0 ∀i, s. (4)

Also, using the value of Bi from Proposition 3, we can show Bi ≥ 0. Thus, we
can conclude

B ≥ 0. (5)

On the other hand, embedding ps into yi,s from Proposition 2, we obtain

yi,s =
BiYs − Ai

ZB + 1
∀i, s.

This together with equations (4) and (5) and assumption Z > 0 gives

yi,s ≥ 0 ∀i, s.

From Propositions 1 and 2, we achieve qi =
∑

s θsyi,s. As θs ≥ 0, we obtain

qi ≥ 0 ∀i.

2 The optimal solution to ISOSP problem: proof
of Proposition 5

Proposition. If (q,x, f ,p) represents the solution of ISOSP, then we have

qi =
(Y + ZA)Bi

1 + ZB
− Ai (6)

xi,s =
(Ys − Y )Ri

1 + ZR
(7)

f =
Y + ZA

1 + ZB

ps =
Y + ZA

1 + ZB
+

Ys − Y

1 + ZR
.

Proof. The Lagrangian function of ISOSP can be represented as follows:

L = −f

(
−Q +

n∑

i=1

qi

)

+
S∑

s=1

θs

(
−ps

(
Q − Cs +

n∑

i=1

xi,s

)

−YsCs +
ZC2

s

2
+

n∑

i=1

(
1
2
dix

2
i,s + ai (qi + xi,s) +

1
2
bi (qi + xi,s)

2
))

.

2



Taking the derivative with respect to different variables yields the following
equations.

∂L

∂qi
= −f +

∑

s

θs (ai + bi (qi + xi,s)) (8)

∂L

∂xi,s
= θs (−ps + ai + bi (qi + xi,s) + dixi,s) (9)

∂L

∂Cs
= θs (ps − Ys + ZCs) (10)

∂L

∂Q
= f −

∑

s

θsps (11)

∂L

∂ps
= θs

(
−Q + Cs −

∑

i

xi,s

)
(12)

∂L

∂f
= Q −

∑

i

qi (13)

The Lagrangian is evidently a convex function. Thus, for finding the solution
of the stochastic program, we should set all above derivatives to zero. From (8)

f = ai + biqi +
∑

s

psxi,s. (14)

From (9) and (14)
ps = f + (bi + di)xi,s, (15)

and from (11)
f =

∑

s

θsps. (16)

Now (14), (15) and (16) result in the following conclusion, as it is also concluded
from Lemma 2. ∑

s

θsxi,s = 0. (17)

Equations (14) and (17) lead to

f = ai + biqi. (18)

Note that the forward price is solely a function of forward quantities.
From (10),

ps = Ys − ZCs, (19)

from (12),

Cs = Q +
∑

i

xi,s, (20)

3



and from (13),

Q =
∑

i

qi. (21)

Equations (17) and (20) lead to
∑

s

θsCs = Q. (22)

Equations (16), (19) and (22) lead to

f = Y − ZQ. (23)

Now from (18) and (23) we can conclude

qi =
Y − ZQ − ai

bi
. (24)

In consequence, using (21), summing qi from (24) over all firms and applying
the change of variables from (ai, bi, di) to (Ai, Bi, Ri), we obtain

Q = (Y − ZQ)B − A.

Therefore,

Q =
Y B − A

1 + ZB
. (25)

Now the following inference can be resulted from (24) and (25).

qi =
(Y + ZA)Bi

1 + ZB
− Ai. (26)

Now let us find xi,s. Equations (15), (19) and (20) give

f + (bi + di)xi,s = Ys − ZQ − Z
∑

i

xi,s.

By adding (23) to this equation we obtain

xi,s =
Ys − Y − Z

∑
i xi,s

bi + di
. (27)

Now by getting a summation from (27) and simplifying the resulting equation
we achieve

∑

i

xi,s =
(Ys − Y )R

1 + ZR
.

By inserting this equation in (27), we obtain

xi,s =
(Ys − Y )Ri

1 + ZR
, (28)

4



and from (23) and (25), the first stage price can be extracted:

f =
Y + ZA

1 + ZB
. (29)

One observation about this equation is that forward price is independent of R,
in other words, it is independent of the deviating cost in the spot market.

Equations (25), (28) and (29) determine the spot price for each scenario:

ps =
Y + ZA

1 + ZB
+

Ys − Y

1 + ZR
. (30)

3 The equilibrium of the stochastic settlement
market: proof of Proposition 7

Proposition. The unique symmetric equilibrium quantities of ISOSP-FD are
as follows.

bi = max{ε,
−Z(n − 2) + β + δ +

√
Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2

2
− dSO}

(31)

ai =
α − Y + Bi (−Z(Y (n − 2) − (2n − 1)α) + Y β + Z(n − 1)(Znα + Y β)Bi)

Bi (Z(n + 1) + β + Y (n − 1)(Zn + β)Bi)
(32)

Proof. To find a symmetric equilibrium, we can use

B−i = (n − 1)Bi,

A−i = (n − 1)Ai,

and

R−i = (n − 1)Ri.

By putting these equations in the best response functions (from Theorem 1)
and solving the resulting equations with respect to Ai and Ri, we obtain the
following equilibrium equations.

Ai =
α − Y + Bi (−Z(Y (n − 2) − (2n − 1)α) + Y β + Z(n − 1)(Znα + Y β)Bi)

Z(n + 1) + β + Y (n − 1)(Zn + β)Bi

Ri = min{Bi,
2

−Z(n − 2) + β + δ +
√

Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2
}
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Let us see why equation (31) implies a true equilibrium quantity. Let

R̂i =
2

−Z(n − 2) + β + δ +
√

Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2
.

If R̂i ≤ Bi, it satisfies the best response function for Ri. When R̂i > Bi, we
need to show

1 + Z(n − 1)Bi

Z + β + δ + Z(n − 1)(β + δ)Bi
≥ Bi.

It means when the other generators j have chosen Rj = Bj , the best response
for the firm i is also to choose Ri = Bi. Note that Bi is a fixed quantity chosen
by the ISO, Thus, Bj = Bi. Now define

f(x) =
1 + Z(n − 1)x

Z + β + δ + Z(n − 1)(β + δ)x
− x.

We can easily show that f(x) is a concave function for x ≥ 0:

f
′′
(x) = − 2Z3(n − 1)2(β + δ)

(Z + β + δ + Z(n − 1)(β + δ)x)3
< 0.

Also f(0) = 1
Z+β+δ > 0 and f(R̂i) = 0. Thus for 0 < Bi < R̂i, and by

considering concavity of f(x), we obtain f(Bi) ≥ 0. Therefore

1 + Z(n − 1)Bi

Z + β + δ + Z(n − 1)(β + δ)Bi
≥ Bi.

4 Stochastic settlement yields non-negative equi-
libria: proof of Proposition 8

Proposition. Let (q∗,x∗) represent an equilibrium of ISOSP-FD. Then the
following inequalities hold.

∀i, s : q∗i + x∗
i,s ≥ 0

∀i : q∗i ≥ 0

Proof. From (26) and (28), the following equation can be derived:

yi,s = q∗i + x∗
i,s =

(Y + ZA)Bi

1 + ZB
− Ai +

(Ys − Y )Ri

(1 + ZR)
.

It is obvious that if yi,s is non-negative for the scenario that has the lowest Ys,
it is non-negative for the other scenarios as well. Thus, we prove this only for
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the scenario s′ for which we have Ys′ ≤ Ys for all s. If we assume having at least
two different scenarios with positive probabilities, we have

Ys′ < Y. (33)

Let us first define

R̂i =
2

−Z(n − 2) + β + δ +
√

Z2(n − 2)2 + 2Zn(β + δ) + (β + δ)2
.

Now consider y
′

i,s′ = minα,δ yi,s′ . Obviously if we prove that y
′

i,s′ is non-negative,
we have also proven the non-negativity of yi,s. Now yi,s satisfies

∂yi,s′

∂δ
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

if R̂i ≤ Bi :
2
(

Zn+β+δ+
√

Z2(n−2)2+2Zn(β+δ)+(β+δ)2
)
(Y −Ys)

√
Z2(n−2)2+2Zn(β+δ)+(β+δ)2

(
Z(n+2)+β+δ+

√
Z2(n−2)2+2Zn(β+δ)+(β+δ)2

)2

Otherwise:
0.

∂yi,s′

∂α
= − 1 + ZB1(n − 1)

Z(n + 1) + β + ZB1(n − 1)(Zn + β)
.

The parameters Z, β, and δ are non-negative. Thus from (33) we can conclude

∂yi,s

∂δ
≥ 0,

∂yi,s

∂α
≤ 0.

Consequently, δ = 0 and α = Ys′ minimize yi,s′ . Note that we have assumed
that the y-intercept of the cost function α is less than the y-intercept of the
demand scenarios Ys′ . Thus, we prove that y

′

i,s′ = yi,s′(δ = 0,α = Ys′) takes
non-negative values.

When δ = 0, at β̂ = 1+ZBi(n−2)
Bi(1+ZBi(n−1)) , we have R̂i = Bi. By applying the fact

that R̂i is a decreasing function of β, we can conclude

Ri =

{
Bi β < β̂

R̂i β ≥ β̂

and

y
′

i,s′ =

{ (Y +ZA)Bi

1+ZB − Ai + (Ys−Y )Bi

(1+ZB) if β < β̂
(Y +ZA)Bi

1+ZB − Ai + (Ys−Y )R̂i

(1+ZR̂)
if β ≥ β̂.
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We can also show that equation y
′

i,s′ = 0 only holds at β = β̂. In addition, y
′

i,s′

is a continuous function. These mean y
′

i,s′ is either entirely positive or entirely
negative in each of [0, β̂] or [β̂,∞). Firstly, we prove that it is positive in [0, β̂].

We see that
∂y

′
i,s′

∂Ai
< 0. On the other hand,

∂Ai

∂β
=

(Y − α) (1 + Z(n − 1)Bi)
2 (1 + ZnBi)

(Z(n + 1) + δ + Z(n − 1)(Zn + β)Bi)
2 ≥ 0.

Therefore, for β < β̂,
∂y

′
i,s′

∂β =
∂y

′
i,s′

∂Ai

∂Ai
∂β is not positive. It means yi,s′ is a non-

increasing function of β in this interval. Considering the fact that y
′

i,s′(β̂) = 0,
we can conclude

y
′

i,s′ ≥ 0 if β ≤ β̂. (34)

The right derivative of y
′

i,s′ at β̂ also has a positive value of

Z2 (Y − Ys) Bi(n − 1) (1 + Z(n − 1)Bi) (1 + ZnBi)
2

√
Z2(n − 2)2 + 2Znβ + δ2 (Z(n + 1) + δ + ZBi (−β + 2n(Zn + β) + Z(n − 1)n(Zn + β)Bi))

2 .

If we add this to the facts that y
′

i,s′(T̂ ) = 0 and y
′

i,s′ is either entirely non-
negative or entirely non-positive for β > β̂, we can conclude that

y
′

i,s′ ≥ 0, if β ≥ β̂. (35)

Equations (34) and (35) can be gathered to conclude

y
′

i,s′ ≥ 0.

Therefore

yi,s = q∗i + x∗
i,s ≥ 0.

We know from Lemma 2 that x∗
i,s is non-positive for at least one-scenario. Thus

q∗i ≥ 0.

5 Equilibrium of the stochastic settlement mech-
anism with non-negativity constraints: Theo-
rem 3

To prove Theorem 3, we consider three different but closely related optimization
problems (for a specified firm). These are:
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1. WONN: The optimization problem of a generator assuming that the non-
negativity constraints are not contained in the market clearing problem.
The optimal solution to this problem (assuming that the other generators
offer the equilibrium values for ISOSP, given in the paper) is the equilib-
rium offer strategy for this firm under ISOSP.

2. WNN: The optimization problem of a generator assuming that the non-
negativity constraints are imposed for the market clearing problem.

3. RWNN: This is a relaxed version of WNN. We remove the orthogonality
constraints ei,s(qi+xi,s) = 0 for any firm i, and non-negativity constraints
qi + xi,s ≥ 0 for all non-optimizing firms (i ̸= j).

We wish to establish that the optimal solution to WONN remains optimal
for WNN. The feasible sets of these problems contain the optimal solutions of
the ISO’s problem. Since ISO’s problem is different with and without non-
negativity constraints, there are points (i.e. a vector of decisions variables such
as offers, prices, dispatch quantities) feasible only for WNN, and points feasible
only for WONN. Therefore, if we show that the optimal solution to WONN is
also feasible in WNN, it does not suffice to prove the theorem, since there are
other feasible solutions of WNN that are not investigated in WONN. This makes
it difficult to present an intuitive proof for the theorem. To prove the theorem,
we use Lemma 5.3 to show that the optimal solution to WONN is also the
optimal solution to RWNN. Then, in the proof of Theorem 3, we establish that
this point is also a feasible solution to WNN. Since it is optimal for the relaxed
problem and it is feasible in the more constrained WNN problem, this point is
also the optimal solution to WNN. Therefore, it is also the equilibrium point
of ISOSP with non-negativity constraints. Lemmas 5.1 and 5.2 are technical
lemmas that help establish the main lemma, Lemma 5.3. Lemma 5.3 is the only
lemma that is directly used in the proof of Theorem 3.

5.1 ISOSP clearing problem with non-negativity constraints

The SP clearing problem with non-negativity constraints is

ISOSP :

min z =
S∑

s=1

θs

(
n∑

i=1

[
ai(qi + xi,s) +

b

2
(qi + xi,s)2 +

di

2
x2

i,s

]
− (YsCs −

Z

2
C2

s )

)

s.t.
∑

i

qi − Q = 0

Q +
∑

i

xi,s − Cs = 0 ∀s ∈ {1, . . . , S}

qi + xi,s ≥ 0 ∀i ∈ {1, . . . , n},∀s ∈ {1, . . . , S}

ISOSP is a convex optimization problem as the objective function of ISOSP is
a convex function, and its constraints are linear. Therefore, solving the KKT
conditions of this problem is equivalent to solving ISOSP.
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5.1.1 KKT of ISOSP

To find the KKT conditions we can use the Lagrangian function

L =
S∑

s=1

(
θs

(
n∑

i=1

(
ai (xi,s + qi) +

b

2
(xi,s + qi) 2 +

di

2
x2

i,s

)

−
(

CsYs −
ZC2

s

2

)
+ ps

(
Q +

n∑

i=1

xi,s − Cs

))

−
n∑

i=1

ei,s (xi,s + qi)

)
− f

(
n∑

i=1

qi − Q

)
.

To produce the building blocks of the KKT condition, we can use the partial
derivatives of L with respect to the decision variables.

∂L

∂qi
= −f −

S∑

s=1

ei,s + (ai + bqi) + b
S∑

s=1

θsxi,s

∂L

∂xi,s
= −ei,s + θs (−ps + ai + bqi + (b + di)xi,s)

∂L

∂Cs
= (ps + ZCs − Ys) θs

∂L

∂Q
= f −

∑

s

θsps

∂L

∂ps
= θs

(
Cs −

(
Q +

n∑

i=1

xi,s

))

∂L

∂f
= Q −

n∑

i=1

qi

∂L

∂ei,s
= −qi − xi,s
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Thus, KKT of this problem can be represented as

− f −
S∑

s=1

ei,s + (ai + bqi) + b
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

Q =
n∑

i=1

qi [C2]

Cs =

(
Q +

n∑

i=1

xi,s

)
∀s ∈ {1, . . . , S} [C3]

ps = (Ys − ZCs) ∀s ∈ {1, . . . , S} [C4]

f =
S∑

s=1

θsps [C5]

ei,s = θs (−ps + ai + bqi + (b + di)xi,s) ∀i ∈ {1, . . . , n} [C6]
∀s ∈ {1, . . . , S}

ei,s(qi + xi,s) = 0 ∀i ∈ {1, . . . , n} [C7]
∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]
∀s ∈ {1, . . . , S}

qi + xi,s ≥ 0 ∀i ∈ {1, . . . , n} [C9]
∀s ∈ {1, . . . , S}.

If we replace the value of f and ei,s from [C5] and [C6] into [C1], constraint [C1]
can be replaced with

∑S
s=1 θsxi,s = 0.

5.1.2 Firms’ optimisation problem

Problem WNN[j] represents the optimization problem solved by firm j to max-
imize its profit, subject to KKT conditions of ISO’s optimization problem.
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WNN[j]:

max uj =
S∑

s=1

θs

(
ps(qj + xj,s)−

(
αj (qj + xj,s) +

βj

2
(qj + xj,s) 2 +

δj

2
xj,s

2

))

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

Q =
n∑

i=1

qi [C2]

Cs =

(
Q +

n∑

i=1

xi,s

)
∀s ∈ {1, . . . , S} [C3]

ps = (Ys − ZCs) ∀s ∈ {1, . . . , S} [C4]

f =
S∑

s=1

θsps [C5]

ei,s = θs (−ps + ai + bqi + (b + di)xi,s) ∀i ∈ {1, . . . , n} [C6]
∀s ∈ {1, . . . , S}

ei,s(qi + xi,s) = 0 ∀i ∈ {1, . . . , n} [C7]
∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]
∀s ∈ {1, . . . , S}

qi + xi,s ≥ 0 ∀i ∈ {1, . . . , n} [C9]
∀s ∈ {1, . . . , S}

To make the optimization problem look simpler, we can replace the values of
Q, Cs, and f from [C2], [C3], and [C5] in the other equations. This simplifies
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WNN to the following shape.

WNN[j]:

max uj =
S∑

s=1

θs

(
ps(qj + xj,s)−

(
αj (qj + xj,s) +

βj

2
(qj + xj,s) 2 +

δj

2
xj,s

2

))

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

ps = Ys − Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)
∀s ∈ {1, . . . , S} [C4]

ei,s = −θs (−ps + ai + bqi + (b + di)xi,s) ∀i ∈ {1, . . . , n} [C6]
∀s ∈ {1, . . . , S}

ei,s(qi + xi,s) = 0 ∀i ∈ {1, . . . , n} [C7]
∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]
∀s ∈ {1, . . . , S}

qi + xi,s ≥ 0 ∀i ∈ {1, . . . , n} [C9]
∀s ∈ {1, . . . , S}

With a similar process, the optimization problem of firm j in a stochastic market
clearing mechanism without non-negativity constraints can be found as

WONN[j]:

max uj =
S∑

s=1

θs

(
ps(qj + xj,s)−

(
αj (qj + xj,s) +

βj

2
(qj + xj,s) 2 +

δj

2
xj,s

2

))

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

ps = Ys − Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)
∀s ∈ {1, . . . , S} [C4]

ei,s = θs (−ps + ai + bqi + (b + di)xi,s) ∀i ∈ {1, . . . , n} [C6]
ei,s = 0 ∀i ∈ {1, . . . , n} [C11]

∀s ∈ {1, . . . , S}

Also, we introduce a relaxation to WNN, which we use later in proofs of our
theorems. We eliminate constraint [C7]: ei,s(qi + xi,s) = 0, and limit the con-
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straint [C9]: ∀i, qi +xi,s ≥ 0 to the optimizer generator j to obtain a relaxation
problem as follows.

RWNN:

max uj =
S∑

s=1

θs

(
ps(qj + xj,s)−

(
αj (qj + xj,s) +

βj

2
(qj + xj,s) 2 +

δj

2
xj,s

2

))

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

ps = Ys − Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)
∀s ∈ {1, . . . , S} [C4]

f =
S∑

s=1

θsps [C5]

ei,s = θs (−ps + ai + bqi + (b + di)xi,s) ∀i ∈ {1, . . . , n} [C6]
∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]
qj + xj,s ≥ 0 ∀s ∈ {1, . . . , S} [C12]

Now, we prove three lemmas which help us to demonstrate the final theorem.

Lemma 5.1. If for every i ̸= j(j is the optimizer generator), ai and di has
the same value, then the constraint ei,s ≥ 0 (for every i ̸= j) in RWNN can be
replaced with ei,s = 0 without reducing the optimal value of RWNN.

Proof. We prove the lemma by contradiction. Assume there exist a point ν =
(aj , dj , q,x,p, e) with at least one ei′,s′ > 0 (i ̸= j) and higher objective value
than any feasible solution with e = 0.

Consider ν′ = (a′
j , d

′
j , q

′,x′,p′, e′) defined as follows.
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q′i =

⎧
⎨

⎩
qi i = j

qi +
Z
∑

h̸=j
∑

w eh,w
Z(n−1)+b −

∑
w ei,w

b i ̸= j
(36)

x′
i,s =

{
xi,s i = j

xi,s +
∑

w ei,w− ei,s
θs

b+di
− Z(

∑
h̸=j

∑
w eh,w−

∑
h̸=j

eh,s
θs

)

(Z(n−1)+b+di)(b+di)
i ̸= j

(37)

a′
j ≥max

s

{
Z

(
∑

h̸=j

∑

w

eh,w

(
1

Z(n − 1) + b
− 1

Z(n − 1) + b + di

)

+
∑

h̸=j
eh,s

θs

Z(n − 1) + b + di

)
+ aj

}
(38)

d′
j =dj (39)

Firstly, we show this is a feasible solution.

∑

s

θsx
′
i,s =

{∑
s θsxi,s i = j

∑
s θsxi,s +

∑
w ei,w−

∑
s θs

ei,s
θs

b+di
− Z(

∑
h̸=j

∑
w eh,w−

∑
s θs

∑
h̸=j

eh,s
θs

)

(Z(n−1)+b+di)(b+di)
i ̸= j

Extra simplifications yield
∑

s

θsx
′
i,s = 0 ∀i. (40)

After substituting the value of q′h from (36) into
∑

h̸=j q′h and slightly simplifying
the resulted equation, we get

∑

h̸=j

q′h =
∑

h̸=j

qh −
∑

h̸=j

∑
w eh,w

Z(n − 1) + b
. (41)

The same analysis on equation (37) gives us the following equation:

∑

h̸=j

x′
h,s =

∑

h̸=j

xh,s +
∑

h̸=j

∑
w eh,w −

∑
h̸=j

eh,s

θs

Z(n − 1) + b + di
. (42)

The quantity p′s can be obtained combining equations [C4], (41), and (42).

p′s =ps − Z

(
−

∑
h̸=j

∑
w eh,w

Z(n − 1) + b
+

∑
h̸=j

∑
w eh,w −

∑
h̸=j

eh,s

θs

Z(n − 1) + b + di

)

=ps + Z

(
∑

h̸=j

∑

w

eh,w

(
1

Z(n − 1) + b
− 1

Z(n − 1) + b + di

)
(43)

+
∑

h̸=j
eh,s

θs

Z(n − 1) + b + di

)
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Considering the fact that ei,s, Z, b, and di have non-negative values,

p′s ≥ ps. (44)

From (36), (37), (43), and [C6], ei,s can be obtained as follows.

e′i,s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei,s + θs(−p′s + ps + a′
j − aj) i = j

ei,s + θs

(
− Z

∑
h̸=j

∑
w eh,w

(
1

Z(n−1)+b − 1
Z(n−1)+b+di

)
i ̸= j

−Z
∑

h̸=j

eh,s
θs

Z(n−1)+b+di
+ Z

∑
h̸=j

∑
w eh,w

Z(n−1)+b −
∑

w ei,w

+
∑

w ei,w − ei,s

θs
− Z(

∑
h̸=j

∑
w eh,w−

∑
h̸=j

eh,s
θs

)

Z(n−1)+b+di

)

This simplifies to

e′i,s =

{
e′j,s ≥ 0 i = j

0 i ̸= j.

Thus, the constraint [C8] is also satisfied. As q′j = qj , x′
j,s = xj,s, and ν is

a feasible solution, constraints [C12] are also fulfilled. In sum, ν′ is a feasible
solution.

On the other hand, a comparison between the u′
j and uj demonstrates that

ν′ gives a better objective:

u′
j − uj =

∑

s

θs(p′s − ps)(qj + xj,s).

With qj +xj,s ≥ 0, as concluded from [C12], and p′s − ps ≥ 0 as resolved in (44)

u′
j ≥ uj

This contradicts the initial assumption, which proves the lemma.

Lemma 5.2. RWNN can be simplified to the following optimization problem.
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RWNN:

max uj = fqj +
S∑

s=1

θs(ps − f)xj,s

−
(

αjqj +
βj

2
q2
j +

βj + δj

2

S∑

s=1

θsxj,s
2

)

s.t.
S∑

s=1

θsxi,s = 0 ∀i ∈ {1, . . . , n} [C1]

ps = Ys − Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)
∀s ∈ {1, . . . , S} [C4]

f =
S∑

s=1

θsps [C5]

ei,s = θs (−ps + ai + bqi + (b + di)xi,s) ∀i ∈ {1, . . . , n} [C6]
∀s ∈ {1, . . . , S}

ei,s ≥ 0 ∀i ∈ {1, . . . , n} [C8]
qj + xj,s ≥ 0 ∀s ∈ {1, . . . , S} [C12]

Proof. The first part of the objective function is the optimizer’s income, which
is equal to

S∑

s=1

θsps(qj + xj,s) =
S∑

s=1

θspsqj +
S∑

s=1

θspsxj,s

=fqj +
S∑

s=1

θsfxj,s +
S∑

s=1

θs(ps − f)xj,s From [C5]

=fqj +
S∑

s=1

θs(ps − f)xj,s + f
S∑

s=1

θsxj,s

=fqj +
S∑

s=1

θs(ps − f)xj,s. From [C1]
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The rest of the objective function can also be simplified similarly, as follows.

Generating Cost =
S∑

s=1

θs

(
αj (qj + xj,s) +

βj

2
(qj + xj,s) 2 +

δj

2
xj,s

2

)

=αjqj +
βj

2
q2
j +

βj + δj

2

S∑

s=1

θsxj,s
2

+ (αj + βjqj)
S∑

s=1

θsxj,s

=αjqj +
βj

2
q2
j +

βj + δj

2

S∑

s=1

θsxj,s
2. From [C1]

Lemma 5.3. If for every i ̸= j(j is the optimizer generator), ai and di has
the same value, then the optimal solution to WONN is at least as good as the
optimal value to RWNN.

Proof. To prove the lemma, we find the optimal solution to RWNN, while we
ignore the non-negativity constraint qj + xj,s ≥ 0. Thus, this point gives an
objective value as good as (possibly better than) the optimal point. Then we
show this point is a feasible solution for WONN, which proves the lemma.

From Lemma 5.2 we have

ei,s = θs

(
−Ys + Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)
+ ai + bqi + (b + di)xi,s

)
.

To simplify the equations we use some transformations. Let Ri = 1
(b+di)

, and
Ai = ai

b . Also, let A and R denote
∑n

h=1 Ah, and
∑n

h=1 Rh respectively. Then,
constraint [C6] looks like

ei,s = θs

(
−Ys + Z

(
n∑

h=1

qh +
n∑

h=1

xh,s

)
+

1
Ri

xi,s + b (Ai + qi)

)
. (45)

A summation over different scenarios gives

S∑

w=1

ei,w = −Y + Z
n∑

h=1

qi + (Ai + qi) b. (46)

From Lemma 5.1, the constraints ei,s = 0 for every i ̸= j and s can be replaced
with ei,s ≥ 0 in RWNN. On the other hand, from the assumption we know that
Ai has a fixed value for every i ̸= j. As a result, equation (46) is used to show
that qi must have a fixed value for every i ̸= j. Thus, equation (46) can be
re-written as
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0 = −Y + Z ((n − 1)qi + qj) + (Ai + qi) b. (47)

With a similar argument, we can show that xi,s also has the same value for
every i ̸= j. Equation (45), thus, can be represented as

0 = θs

(
−Ys + Z ((n − 1)qi + qj + (n − 1)xi,s + xj,s) +

1
Ri

xi,s + b (Ai + qi)
)

(48)

Solving equations (47) and (48), we find the values of qi and xi,s as functions
of qj and xj,s.

qi =
Y − bAi − Zqj

b + (n − 1)Z

xi,s = − Ri (Y − Ys + Zxj,s)
1 + (n − 1)ZRi

(49)

From (49) we can also calculate the values of f and ps − f as functions of qj

and xj,s.

f =
b (Y + (n − 1)ZAi − Zqj)

b + (n − 1)Z

ps − f =
−Y + Ys − Zxj,s

1 + (n − 1)ZRi

(50)

Inserting these values into the utility function from Lemma 5.2 simplifies the
utility function to

uj =
(

b (Y + (n − 1)ZAi − Zqj)
b + (n − 1)Z

− αj −
βj

2
qj

)
qj

+
S∑

s=1

θs

(
−Y + Ys − Zxj,s

1 + (n − 1)ZRi
− βj + δj

2
xj,s

)
xj,s

As Z, αj , βj , and Ri have non-negative values, uj is a concave function of qj

and xj . Therefore, ignoring the rest of the constraints, the optimal value of qj

and xj,s can be found using first order conditions.
First order conditions for qj and xj,s gives

q∗j =
bY + (n − 1)bZAi − (b + (n − 1)Z)αj

2bZ + (b + (n − 1)Z)βj
(51)

x∗
j,s =

Ys − Y

2Z + (1 + (n − 1)ZRi) (βj + δj)
. (52)

Now we need to show that we can always find Aj and Rj , so that this value is
a feasible solution to WONN and yields ej,s = 0. To do so, we first calculate
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ej,s

θs
−

∑
w ej,w for all s. From (45), (46), and (51)

ej,s

θs
−

S∑

w=1

ej,w =Y − Ys +
xj,s

Rj
+ Z ((n − 1)xi,s + xj,s)

=
(Y − Ys) (−1 + Rj (Z + βj + δj) + (n − 1)ZRi (−1 + Rj (βj + δj)))

Rj (1 + (n − 1)ZRi) (2Z + (1 + (n − 1)ZRi) (βj + δj))
.

(53)

It is always possible to choose Rj as follows to ensure that ej,s

θs
−

∑
w ej,w = 0.

Note that this does not change either of production quantities or prices. This
value of Rj is

Rj =
1 + (n − 1)ZRi

Z + (1 + (n − 1)ZRi) (βj + δj)
.

We can also choose Aj so that
∑

w ej,w = 0 without changing any production
quantity and thus any prices. From (46) and (49)

S∑

w=1

ej,w = − Y + Z ((n − 1)qi + qj) + b (Ah + qh)

= − Y + b (Aj + qj) +
(n − 1)Z (Y − bAi) + bZqj

b + (n − 1)Z
.

(54)

Solving
∑

w ej,w = 0 for Aj gives

Aj =
−bY (b + (n − 2)Z) + (b + (n − 1)Z) ((b + nZ)αj + Y βj)

(b + (n − 1)Z) (2bZ + (b + (n − 1)Z)βj)

+
−(n − 1)ZAi (b(b + (n − 2)Z) − (b + (n − 1)Z)βj)

(b + (n − 1)Z) (2bZ + (b + (n − 1)Z)βj)
.

These values of Aj and Rj ensure that ej,s = 0 ∀s. Thus, constraints [C6] and
[C8] are met in WONN and RWNN.

From (51) we derive
∑

s θsxj,s = 0. We can use the fact that
∑

s θsxj,s = 0
to show that for i ̸= j also

∑
s θsxi,s = 0 (in equation (49)). So this optimal

point is feasible in [C1]. In sum, the constructed point is feasible for WONN,
and gives an objective value at least as good as RWNN.

Now, we can use the above lemmas to prove a theorem that justifies using
the equilibrium of the simplified game without the non-negativity constraints
instead of the equilibrium of the original game.

Theorem. The equilibrium of the symmetric stochastic settlement game with-
out the non- negativity constraints in ISOSP-FD is also the equilibrium of the
stochastic settlement game with the non-negativity constraints.
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Proof. To prove the theorem, we should show that if all generators offer the
equilibrium values of ai and di, none of them are willing to deviate from it.
Equivalently, if in WNN ai and di are equal to the equilibrium of the SFSP
game without the non-negativity constraints for all i ̸= j, then optimal aj and
dj are also equal to equilibrium values of this game.

The equilibrium of SFSP without non-negativity constraints is equal to the
optimal value of WONN when every non-optimizer generator has offered the
equilibrium values of the game. Thus, we prove that the optimal value of WONN
is also optimal to WNN.

Firstly, Lemma 5.3 states that if the optimal solution to WONN is feasible
to RWNN, then, it is also the optimal solution to RWNN. In our problem, from
Proposition 8 we know that the optimal solution to WONN holds both qi ≥ 0
and qi + xi,s ≥ 0. The other constraints of RWNN are shared between these
two models. Thus, it is feasible and optimal in RWNN.

On the other hand, every feasible solution to WNN is feasible in RWNN. So,
if this solution (which is the optimal solution to RWNN) is feasible to WNN,
then it is also optimal to WNN. From Proposition 8, we know that qi ≥ 0 and
qi +xi,s ≥ 0 for all i, as it is the equilibrium of the game without non-negativity
constraints. This means this point is feasible in [C8] and [C9]. On the other
hand, we know that ei,s = 0 for all i, as it is the optimal solution to WONN.
This shows it also holds [C7]. The other constraints are common and thus met.
In sum, This point is feasible and therefore optimal to WNN.

Thus, no generator is willing to deviate from this point unilaterally, and this
is the equilibrium of WNN.
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