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Abstract— We explore motion planning for a new class of
highly flexible bevel-tip medical needles that can be steered
to previously unreachable targets in soft tissue. Planning
for these procedures is difficult because the needles bend
during insertion and cause the surrounding soft tissues to
displace and deform. In this paper, we develop a planning
algorithm for insertion of highly flexible bevel-tip needles into
soft tissues with obstacles in a 2D imaging plane. Given an
initial needle insertion plan specifying location, orientation,
bevel rotation, and insertion distance, the planner combines
soft tissue modeling and numerical optimization to generate a
needle insertion plan that compensates for simulated tissue de-
formations, locally avoids polygonal obstacles, and minimizes
needle insertion distance. The simulator computes soft tissue
deformations using a finite element model that incorporates
the effects of needle tip and frictional forces using a 2D
mesh. We formulate the planning problem as a constrained
nonlinear optimization problem that is locally minimized
using a penalty method that converts the formulation to a
sequence of unconstrained optimization problems. We apply
the planner to bevel-right and bevel-left needles and generate
plans for targets that are unreachable by rigid needles.

Index Terms— steerable needle, medical robotics, motion
planning, surgery simulation.

I. INTRODUCTION

Needle insertion is a critical step in many diagnostic and
therapeutic medical procedures, including biopsy to obtain
a specific tissue sample for testing, drug injections for anes-
thesia, or radioactive seed implantation for brachytherapy
cancer treatment. In this paper we consider highly flexible
bevel-tip needles that can be steered around obstacles by
taking advantage of needle bending and the asymmetric
force applied by the needle tip to the tissue. These steerable
needles are capable of reaching targets inaccessible by rigid
needles.

The success of medical needle insertion procedures often
depends on the accuracy with which the needle can be
guided to a specific target in soft tissue. Unfortunately,
inserting and retracting needles causes the surrounding soft
tissues to displace and deform: ignoring these deformations
can lead to significant errors. In brachytherapy, physicians
use slightly flexible needles to permanently implant ra-
dioactive seeds inside the prostate that irradiate surrounding
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Fig. 1. In this example based on an MR image of the prostate [12],
a biopsy needle attached to a rigid rectal probe (black half-circle) is
inserted into the prostate (outlined in yellow) using simulation. Obstacles
(red polygons) and the target (green cross) are overlaid on the image.
The target is not accessible from the rigid probe by a straight line path
without intersecting obstacles. However, bevel-tip needles bend as they
are inserted into soft tissue (b). Our planner computes a locally optimal
bevel-left needle insertion plan that reaches the target, avoids obstacles,
and minimizes insertion distance (c). Using different initial conditions,
our planner generates a plan for a bevel-right needle (d). Due to tissue
deformation, the needle paths do not have constant curvature.

tissue over several months. Successful treatment depends
on the accurate placement of radioactive seeds within the
prostate gland [6], [15]. However, tissue deformations and
needle bending lead to significant errors in seed implanta-
tion locations [15], [19], [1], [2].

Fast and accurate computer simulations of needle inser-
tion procedures can facilitate physician training and assist
in pre-operative planning and optimization. In this paper
we develop a simulation and planner for steerable bevel-
tip needle insertion in a 2D imaging plane. Many imaging
methodologies, such as ultrasound, display a 2D planar
cross-section of the human body. MR images, which may
contain multiple planar slices composing a 3D volume,
have an inter-slice distance significantly greater than the



diameter of a medical needle. Hence, in this paper we
restrict needle motion to a 2D cross-section of the patient
anatomy.

Our interactive simulation approximates soft tissues as
linearly elastic materials and uses a 2D finite element
model to compute tissue deformations due to tip and
friction forces applied by the steerable needle. Polygonal
obstacles represent tissues that cannot be cut by the needle,
such as bone, or sensitive tissues that should not be dam-
aged, such as nerves or arteries. The simulation enforces
nonholonomic constraints on needle motion.

Our planner considers 4 degrees of freedom: initial loca-
tion, initial orientation, binary bevel rotation, and insertion
distance. The planner computes locally optimal values for
these variables to compensate for tissue deformations and
reach the target in simulation while avoiding polygonal
obstacles and minimizing insertion distance so less tissue
is damaged by the needle. Even in situations where real-
time imaging such as ultrasound or interventional MRI is
available, pre-planning is valuable to set the needle initial
location and orientation and compute a desired trajectory
that minimizes tissue damage.

II. RELATED WORK

Needle insertion simulation requires estimating biome-
chanical deformations of soft tissue when forces are ap-
plied. Reviews of past work on finite element modeling
for soft tissue simulation are included in [5] and [1].

Earlier work on interactive simulation of needle insertion
assumed 2D planar deformations and a thin rigid needle
with a symmetric tip [7], [3], [1]. Planning optimal inser-
tion location and insertion distance to compensate for 2D
tissue deformations has been addressed for rigid needles
[2]. DiMaio and Salcudean modeled a flexible symmetric-
tip needle with 2D triangular elements and used a nonlinear
finite element method to compute the needle’s deformation
[8]. Key nodes from the needle mesh were embedded in
a tissue mesh whose deformations were computed using a
linear quasi-static finite element method.

Our interactive simulation relaxes both the needle rigid-
ity and symmetric-tip assumptions by modeling steerable
bevel-tip needles. Okamura et al. are studying paths of
flexible bevel-tip needles during insertion [21]. O’Leary
et al. showed that needles with bevel tips bend more than
symmetric-tip needles [14]. Webster et al. developed thin
highly flexible bevel-tip needles using Nitinol and exper-
imentally tested them in very stiff tissue phantoms [21].
The needles followed constant-curvature paths in a plane
when bevel rotation was fixed during needle insertion.

Webster et al. [21] developed a nonholonomic model
for steering flexible bevel-tip needles in rigid tissues. The
nonholonomic model, a generalization of a 3 degree-of-
freedom bicycle model, was experimentally validated using
a very stiff tissue phantom. Recent advances by Zhou
and Chirikjian in nonholonomic path planning include
stochastic model-based motion planning to compensate for
noise bias [23] and probabilistic models of dead-reckoning
error in nonholonomic robots [22].

Past work has addressed steering symmetric-tip needles
in 2D deformable tissue that have 3 degrees of freedom:
translating the needle base perpendicular to the insertion
direction, rotating the the needle base along an axis per-
pendicular to the plane of the tissue, and translation along
the needle insertion axis [8], [10]. DiMaio and Salcudean
compute and invert a Jacobian matrix to translate and orient
the base to avoid point obstacles with oval-shaped potential
fields. Glozman and Shoham approximate the tissue using
springs and also use an inverse kinematics approach to
translate and orient the base every time step. In our work,
we address bevel-tip steerable needles that have 2 degrees
of freedom during insertion: rotation about the insertion
axis and translation along the insertion axis. We are not
aware of past work that has explicitly considered the effect
of tissue deformations on this type of steerable needle.

Setting accurate parameters for tissue properties is im-
portant for realistic simulation. Krouskop et al. estimated
the elastic modulus for prostate and breast tissue using
ultrasonic elastography [13]. Past work has investigated
friction models and parameters for needles in soft tissues
[18], [11]. Physical measurements of forces exerted during
needle insertion were measured by Kataoka et al., who
separately measured tip and frictional forces during needle
insertion into a canine prostate [11].

Medical needle insertion procedures may benefit from
the more precise control of needle position and velocity
made possible through robotic surgical assistants. A survey
of recent advances in medical robotics was written by Tay-
lor and Stoianovici [20]. Dedicated hardware for prostate
biopsy needle insertion procedures that can be integrated
with transrectal ultrasound imaging is being developed by
Fichtinger et al. [9], [16].

III. SIMULATION OF BEVEL-TIP NEEDLE INSERTION

A bevel-tip needle, unlike a symmetric-tip needle, will
cut tissue at an angle, as shown in Fig. 2. Since the needle
cuts at an angle away from the direction of insertion, the
needle may bend in the direction of the bevel.

(a) Symmetric tip (b) Bevel tip

Fig. 2. A symmetric-tip needle exerts forces on the tissue equally in
all directions, so it cuts tissue in the direction that the tip is moving. A
bevel-tip needle exerts forces asymmetrically and cuts tissue at an angle.

In 2D, we only consider 2 bevel rotations: bevel-right
(0◦) and bevel-left (180◦), as shown in Fig. 1. Rotating
the bevel to different orientations will cause the needle
tip to move out of the imaging plane. In future work, we
plan to extend our 2D model to 3D and consider any bevel
orientation in the range [0◦, 360◦).

Our simulation models forces exerted by the needle on
the soft tissue, including the cutting force at the needle
tip and friction forces along the needle shaft. We assume



needle bending forces are negligible compared to the elastic
forces applied by the soft tissue to the needle.

A. Soft Tissue Model

We specify the anatomy geometry (i.e. the prostate
and surrounding tissues) using a finite element mesh.
The geometric input is a 2D slice of tissue with tissue
types segmented by polygons. We automatically generate
a finite element mesh G composed of n nodes and m
triangular elements in a regular right triangle mesh or using
the constrained Delaunay triangulation software program
Triangle [17], which generates meshes that conform to the
segmented tissue type polygons.

The model must also include tissue material properties
and boundary conditions for the finite element mesh. In
our current implementation, we approximate soft tissues as
linearly elastic, homogeneous, isotropic materials. For each
segmented tissue type, the model requires tissue material
properties (Young’s modulus, Poisson ratio, and density).
We set values for these parameters as described in past
work [2]. Mesh nodes inside bones are constrained to be
fixed. A boundary condition of either free or fixed must be
specified for each node on the mesh perimeter.

The complete tissue model M specifies the finite element
mesh G, material properties, and boundary conditions. We
assume the tissue in M is initially at equilibrium and
ignore external forces not applied by the needle. We do
not model physiological changes such as edema (tissue
swelling), periodic tissue motion due to breathing or heart
beat, or slip between tissue type boundaries.

B. Computing Soft Tissue Deformations

The material mesh G defines the geometry of the unde-
formed tissues, with each node i having coordinate xi in
the material frame. Forces resulting from needle insertion
cause the tissue to deform. The deformation is defined
by a displacement ui for each node i in mesh G. The
deformed mesh G′ is constructed in the world frame using
the displaced node coordinate xi + ui for each node i.
A point y in the material frame can be transformed to
the world frame coordinate y′ and vice versa using linear
interpolation between the nodes of the enclosing finite
element [1].

At each time step of the simulation we compute the
acceleration of each node i, which includes acceleration
due to elastic forces computed using a linear finite element
method and the external force fi exerted by the needle. We
use explicit Euler time integration to integrate velocity and
displacement for each free node for each time step. Time
steps have duration h = 0.01 seconds.

C. Needle Insertion Model

Without loss of generality, we set the coordinate axes of
the world frame so that the default needle insertion axis
is along the positive z-axis. The y-axis corresponds to the
initial location degree of freedom. The needle tip is initially
located at a base coordinate p0 = (y0, z0). The initial
orientation of the needle is specified using θ, as shown

in Fig. 3. For simulation stability, we constrain θ between
−45◦ and 45◦. The needle tip rotation is either bevel-right
(0◦) or bevel-left (180◦). We assume the needle tip rotation
is held constant during insertion due to planner efficiency
and lack of experimental data for simulation, although we
hope to relax this assumption in future work.

Fig. 3. Slice of soft tissue in the yz plane. The bevel-tip needle is initially
at the base coordinate p0 with orientation θ. It is inserted a distance d,
causing the surrounding soft tissue to deform.

We assume the flexible needle is supported so that it does
not bend outside the tissue. Once the needle has entered
the tissue, it will bend in the direction of the bevel-tip.
The distance the needle has been inserted from the base
coordinate is d. We parameterize the needle by s where s =
0 corresponds the needle base and s = d corresponds to
the needle tip. Let ps denote the material frame coordinate
of the point along the needle a distance s from the base.

Simulation of needle insertion requires a needle model N
that specifies needle properties, including insertion velocity
v, the cutting force required at the needle tip to cut tissue,
and the static and dynamic coefficients of friction between
the tissue and needle.

We model the needle by line segment elements that
correspond to edges of triangle elements in the deformed
tissue mesh. Since the needle path is not known a priori,
the material mesh must be modified in real-time. The
simulation maintains a node at the needle tip location and
a list of nodes along the needle shaft. At each simulation
time step, the needle exerts force on the tissue at the needle
tip, where the needle is displacing and cutting the tissue,
and along the needle shaft due to friction.

Highly flexible bevel-tip needles tested in tissue phan-
toms by Webster et al. [21] were experimentally shown
to follow a constant-curvature path when the bevel rota-
tion was fixed during needle insertion. Setting simulation
parameters to the limiting case of highly stiff tissue, zero
tissue cutting force, and zero friction allows us to replicate
this constant curvature path. In other cases, the needle path
through deformed tissue may not be of constant curvature.

D. Simulating Cutting at the Needle Tip
During each simulation time step, the needle tip moves

a distance vh in the world frame, where v is the needle
insertion velocity and h is the time step duration. The
simulation must maintain element edges along the needle
path, which requires mesh modification as the needle cuts
through the tissue.



The simulation constrains a node to be located at the
needle tip. The current needle tip node is labeled ntip and
the needle is pointed in direction q. The needle will cut
tissue a small distance dcut along the vector r in the world
frame, where r is deflected from q by an angle θd, as shown
in Fig. 4. If the force at the needle tip along r is greater than
a threshold fcut based on needle and tissue properties, then
the needle will cut through the tissue. Cutting is represented
in the material mesh by moving the needle tip node ntip

by the distance dcut transformed to the material frame. If
no tissue deformation occurs, this method guarantees the
needle will cut a path of constant curvature whose radius
of curvature is a function of the deflection angle θd. When
tissue deformation does occur at the needle tip, the path
will be of constant curvature locally but will deviate from
constant curvature globally depending on the magnitude of
the deformations.

As the needle tip cuts through the mesh, it will be
necessary to change the needle tip node. If the needle tip
node is too close to the opposite triangle edge e, the tip
node is moved back along the shaft and a new tip node, the
closest node along edge e, is selected as the new tip node
and moved to the new tip location in the material frame.

Fig. 4. The tissue mesh is modified so edge boundaries are formed
along the path of needle insertion. A subset of the tissue mesh, centered
at needle tip node ntip, is shown. The straight line path of the needle
is shown by vector q. Because of the bevel-tip, the needle cuts tissue in
direction r, which is deflected from q by θd degrees.

E. Simulating Friction Along the Needle Shaft

We implemented a stick-slip friction model between the
needle and the soft tissue. Nodes along the needle shaft
carry friction state information; they are either attached to
the needle (in the static friction state) or allowed to slide
along the needle shaft (in the dynamic friction state).

When a node enters the static friction state, its distance
from the needle tip along the shaft is computed. For each
time step where the node remains in the static friction state,
its position is modified by moving it tangent to the needle
so that its distance from the tip along the needle shaft is
held constant. A node moves from the static to the dynamic
friction state when the force required to displace the node
along the needle shaft exceeds a slip force parameter fsmax

.
When a node is in the dynamic friction state, a dissi-

pative force is applied along the needle tangent. A node
moves from the dynamic to the static friction state when
the relative velocity of the needle to the tissue at the node
is close to zero.

F. Simulation Results
Our simulator was implemented in C++ using OpenGL

for visualization. It achieved an average of approximately
100 frames per second on a 1.6GHz Pentium M computer
for a mesh composed of 1250 triangular elements. Com-
putation time per frame increases linearly with the number
of nodes along the needle shaft.

We demonstrate our simulation results in 2 cases: rigid
tissue and deformable tissue. In both cases we simulate
the insertion of a bevel-tip needle into a square of tissue
fixed on 3 sides. In the first case, we consider tissue that is
stiff relative to the needle and a sharp frictionless bevel-tip
needle that cuts the tissue with zero cutting force. As shown
in Fig 5(a), the simulated needle follows a path of constant
curvature, which is the behavior experimentally verified by
Webster et al. [21]. In the second case shown in Fig. 5(b),
we insert the needle into a deformable soft tissue mesh with
positive cutting force and friction coefficients. Although
the tip locally follows a path of constant curvature as
explained in Section III-D, the global path is not of constant
curvature. Past experiments have demonstrated the effect
of tissue deformations due to rigid needle insertion [7],
[1]. We plan to develop experiments to test the bending
behavior of flexible bevel-tip needles in deformable tissues
to more accurately set parameters for our model in future
work.

(a) Rigid Tissue (b) Deformable Tissue

Fig. 5. We simulate insertion of a bevel-tip needle into a square tissue
fixed on 3 sides. When the tissue is stiff relative to the needle, a sharp
frictionless needle cuts a path of constant curvature (a). A needle with
positive cutting and friction forces will bend in deformable tissue (b).

IV. PLANNING

A needle insertion plan is defined by X = (y0, θ, b, d)
where y0 ∈ R is the insertion location, θ ∈ [−90◦, 90◦] is
the insertion angle, b ∈ {0◦, 180◦} is the bevel rotation,
and d ∈ R+ is the distance the needle will be inserted.
Obstacles are defined as nonoverlapping polygons in a set
O. The target is defined as a point t in the material frame
of the soft tissue mesh. A plan X is feasible if the needle
tip is within εt > 0 of the target and the needle path in
deformable tissue does not intersect any obstacle. The goal
of needle insertion planning is to generate a feasible plan
X that minimizes d.

A. Problem Formulation
The simulation of needle insertion described in Section

III takes parameters X for the initial conditions and needle



insertion distance, M for the soft tissue model, and N
for the needle model and outputs the coordinates ps for
s ∈ [0, d] that the needle will follow in the material frame.

ps = NeedleSim(X, M, N), s ∈ [0, d]

The variables of plan X are constrained by application
specific limits ymin, ymax, θmin, θmax, and dmax.

ymin ≤ y0 ≤ ymax

θmin ≤ θ ≤ θmax

0 ≤ d ≤ dmax

These constraints enforce the limits of the simulation, such
as the angle requirements in Section III-C. In the biopsy
example in Fig. 1, dmax is the maximum length of the
needle and ymax − ymin defines the width of the rectal
probe.

The needle tip coordinate pd in a feasible solution must
be within Euclidean distance εt of the target t.

‖pd − t‖ ≤ εt

In the presence of a nonempty set of polygonal obstacles
O, we require that the needle path in a feasible solution
does not intersect an obstacle. Let cs be the distance from
ps to the closest point on the closest obstacle o ∈ O and
let the sign of cs be negative if ps is inside obstacle o
and positive otherwise. We require cs ≥ εo for some given
tolerance εo ≥ 0 for all points s along the needle shaft. We
formulate this constraint as∫ d

0

max{−cs + εo, 0}ds ≤ 0.

We can quickly compute this integral numerically using
points sampled along the needle path.

We summarize the problem formulation for variable
X = (y0, θ, b, d) given target coordinate t, polygonal
obstacles O, tolerances εt and εo, tissue model parameters
M , needle model parameters N , and variable limits ymin,
ymax, θmin, θmax, and dmax.

min f(X) = d
Subject to:
‖pd − t‖ ≤ εt∫ d

0
max{−cs + εo, 0}ds ≤ 0

ymin ≤ y0 ≤ ymax

θmin ≤ θ ≤ θmax

0 ≤ d ≤ dmax

The values of ps for s ∈ [0, d] are computed by executing
the simulator NeedleSim(X, M, N). The obstacle distances
cs for s ∈ [0, d] are computed using ps and the set of
obstacles O.

B. Optimization Method

To reduce the complexity of the optimization, we reduce
the number of variables in X from 4 to 2. Given a plan X ,
we can find the optimal insertion distance d by executing
the simulation to insertion distance dmax and identifying
the point ps along the needle path that minimizes the

distance to the target t. Hence, d does not need to be
explicitly treated as a variable since its value is implied
by the other variables in X . Furthermore, variable b in X
is binary since it represents the bevel-right or bevel-left
needle rotation state. We optimize X separately for the
bevel-right and bevel-left states.

We solve for a locally optimal solution X∗ using a
penalty method. Penalty methods, originally developed
in the 1950’s and 1960’s, solve a constrained nonlinear
optimization problem by converting it to a series of un-
constrained nonlinear optimization problems [4]. Given
the constrained optimization problem min f(x) subject
to g(x) ≤ 0, we can write the unconstrained problem
min(f(x) + µmax{0, g(x)}2) for some large µ > 0.
Penalty methods generate a series of unconstrained op-
timization problems as µ → ∞. Each unconstrained
optimization problem can be solved using Gradient Descent
or variants of Newton’s Method. For convex nonlinear
problems, the method will generate points that converge
arbitrarily close to the global optimal solution [4]. For
nonconvex problems, the method can only converge to a
local optimal solution.

For steerable needle insertion planning, we convert the
target and obstacle constraints to penalty functions to define
a new nonlinear nonconvex optimization problem.

min f̂(X) = d + µ (max{‖pd − t‖ − εt, 0})2 +

µ
(∫ d

0
max{−cs + εo, 0}ds

)2

Subject to:
ymin ≤ y0 ≤ ymax

θmin ≤ θ ≤ θmax

0 ≤ d ≤ dmax

Evaluating the objective function f̂(X) requires executing
the simulator NeedleSim(X, M, N) to compute the needle
path ps for s ∈ [0, d] and the obstacles distances cs.
The remaining constraints are the limit constraints that are
required for simulation stability and can never be violated.

We use Gradient Descent to find a local optimal solution
to the unconstrained minimization problem min f̂(X). The
limit constraints are easily enforced at each iteration. We
solve a sequence of 4 unconstrained problems, each with
10 Gradient Descent iterations. After each unconstrained
problem has been solved, we multiply the penalty factor
µ by 10. In future work, we plan to determine problem-
specific termination criteria for the unconstrained optimiza-
tion problems and for the penalty method.

The objective function f̂(X) cannot be directly differen-
tiated since the simulator cannot be written as a closed form
equation. For the Gradient Descent method, we numerically
approximate the derivatives of the objective function with
respect to the insertion location y0 and orientation θ.
We compute df̂/dy0 by translating the needle path by
∆y0 and recomputing f̂ . Similarly, we compute df̂/dθ by
rotating the needle path by ∆θ about the insertion base
coordinate p0 and recomputing f̂ . These approximations
do not explicitly account for the different deformations
that occur when y0 or θ are modified but were sufficiently



(a) Initial Conditions (b) Bevel-right Plan

Fig. 6. In this example based on an MR image of the sagittal plane of
the prostate [12], a biopsy needle is inserted into the prostate (outlined
in yellow) (a). The planner computes an initial position, orientation,
and insertion distance so the needle reaches the target (green cross)
while avoiding obstacles (red polygons) and compensating for tissue
deformations in simulation (b).

accurate for small ∆y0 and ∆θ in our results described
below.

C. Planner Results

We implemented the planner in C++ and used the
simulation described in Section III. Results for medical
biopsy examples are shown in Fig. 1(c), Fig. 1(d), and
Fig. 6(b). For each example, the tissue model mesh was
composed of 1196 triangular elements and the planner
required approximately 5 minutes of computation time on
a Pentium M 1.6GHz computer. We set εt = εo = 0.1cm
and the penalty method solution satisfied the constraints
within a tolerance of 0.02.

V. CONCLUSION

We described a needle insertion planning algorithm
for steerable bevel-tip needles that combines numerical
optimization with soft tissue simulation. The simulation,
based on a linear finite element method, models the effects
of needle tip and frictional forces on soft tissues defined by
a 2D mesh. Our planning algorithm computes a locally op-
timal initial location, orientation, and insertion distance for
the needle to compensate for predicted tissue deformations
and reach a target while avoiding polygonal obstacles.

The effectiveness of the planner is dependent on the
accuracy of the simulation of steerable needle insertion
and soft tissue deformations. In future work, we will
compare the output of our simulation to new physical
experiments, determine the sensitivity of results to model
parameters, consider a finite set of different bevel types,
allow bevel rotation during insertion, improve the efficiency
of our optimization method, and extend our simulation and
planner to 3D.

ACKNOWLEDGMENT

We thank Russ Taylor for introducing us to the problem
of needle insertion and Greg Chirikjian, Robert Webster,
Gabor Fichtinger, James F. O’Brien, John Kurhanewicz,
Tim Salcudean, Simon DiMaio, A. Frank van der Stappen,
K. Gopalakrishnan, Dezhen Song, and Michael Yu for their
valuable feedback and assistance. We also thank physicians
Leonard Shain of CPMC and I-Chow Hsu of UCSF for
their feedback on medical aspects of this work.

REFERENCES

[1] R. Alterovitz, J. Pouliot, R. Taschereau, I.-C. Hsu, and K. Goldberg,
“Needle insertion and radioactive seed implantation in human tis-
sues: Simulation and sensitivity analysis,” in Proc. IEEE Int. Conf.
on Robotics and Automation, vol. 2, Sept. 2003, pp. 1793–1799.

[2] ——, “Sensorless planning for medical needle insertion procedures,”
in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
vol. 3, Oct. 2003, pp. 3337–3343.

[3] ——, “Simulating needle insertion and radioactive seed implantation
for prostate brachytherapy,” in Medicine Meets Virtual Reality 11,
J. D. Westwood et al., Eds. IOS Press, Jan. 2003, pp. 19–25.

[4] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Program-
ming: Theory and Algorithms, 2nd ed. John Wiley & Sons, Inc.,
1993.

[5] S. Cotin, H. Delingette, and N. Ayache, “Real-time elastic defor-
mations of soft tissues for surgery simulation,” IEEE Trans. on
Visualization and Computer Graphics, vol. 5, no. 1, 1999.

[6] J. E. Dawson, T. Wu, T. Roy, J. Y. Gy, and H. Kim, “Dose effects of
seeds placement deviations from pre-planned positions in ultrasound
guided prostate implants,” Radiotherapy and Oncology, vol. 32,
no. 2, pp. 268–270, 1994.

[7] S. P. DiMaio and S. E. Salcudean, “Needle insertion modeling and
simulation,” in Proc. IEEE Int. Conf. on Robotics and Automation,
May 2002, pp. 2098–2105.

[8] ——, “Needle steering and model-based trajectory planning,” in
MICCAI, 2003.

[9] G. Fichtinger, T. L. DeWeese, A. Patriciu, A. Tanacs, D. Mazilu,
J. H. Anderson, K. Masamune, R. H. Taylor, and D. Stoianovici,
“System for robotically assisted prostate biopsy and therapy with
intraoperative CT guidance,” Academic Radiology, vol. 9, no. 1, pp.
60–74, 2002.

[10] D. Glozman and M. Shoham, “Flexible needle steering and optimal
trajectory planning for percutaneous therapies,” in MICCAI, Sept.
2004.

[11] H. Kataoka, T. Washio, K. Chinzei, K. Mizuhara, C. Simone, and
A. Okamura, “Measurement of tip and friction force acting on a
needle during penetration,” in MICCAI, 2002, pp. 216–223.

[12] Y. Kim, “Image-based high dose rate (HDR) brachytherapy for
prostate cancer,” Ph.D. dissertation, UC Berkeley, Dec. 2003.

[13] T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garria, and T. Hall,
“Elastic moduli of breast and prostate tissues under compression,”
Ultrasonic Imaging, vol. 20, no. 4, pp. 260–274, Oct. 1998.

[14] M. D. O’Leary, C. Simone, T. Washio, K. Yoshinaka, and A. M.
Okamura, “Robotic needle insertion: Effects of friction and needle
geometry,” in Proc. IEEE Int. Conf. on Robotics and Automation,
Sept. 2003, pp. 1774–1780.

[15] J. Pouliot, R. Taschereau, C. Coté, J. Roy, and D. Tremblay, “Dosi-
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