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Abstract— The vibratory bowl feeder remains the most com-
mon approach to the automated feeding (orienting) of indus-
trial parts. We study the algorithmic design of devices on the
bowl feeder track that filter out all but one orientation of a
given polyhedral part. In this context, we propose a simple
new primitive, consisting of one horizontally mounted convex
polygonal metal “blade”, that can feed a broad class of three-
dimensional parts by reorienting and rejecting all but those in
a desired orientation. This powerful new 3D geometric feeding
primitive combines the reorientation functionality of fences with
the rejection functionality of traps.

Due to its simplicity, the proposed primitive allows for the
development of methods to automate its design process. We
present a complete procedure that takes as input any polyhedral
part along with its center of mass. Given this input, the procedure
identifies all single blade solutions that feed the part. The output
is either the set of all valid blade designs or a notification that
the part cannot be fed using a single blade.

I. INTRODUCTION

A part feeder takes in a stream of identical parts in arbitrary
orientations and outputs them in a uniform orientation. We
consider the problem of sensorless orientation of parts, in
which the initial orientation of the part is assumed to be
unknown. In sensorless manipulation, parts are positioned
and/or oriented using passive mechanical compliance. The
input is a description of the part shape and the output is
a sequence of open-loop actions that moves a part from an
unknown initial orientation into a unique final orientation.
Among the sensorless part feeders considered in literature are
the parallel-jaw gripper [1], [2], the single pushing jaw [3],
[4], [5], the conveyor belt with a sequence of (stationary)
fences [2], [6], [7] or pins [8] placed along its sides, the
conveyor belt with a single rotational fence [9], the tilting
tray [10], [11], vibratory plates and programmable vector fields
[12].

The oldest and still most common approach to automated
feeding is the vibratory bowl feeder. It consists of a bowl filled
with parts surrounded by a helical metal track [13]. The bowl
and track undergo an asymmetric helical vibration that causes
parts to move up the track, where they encounter a sequence
of mechanical devices such as wiper blades, grooves and traps.
Most of these devices are filters that serve to reject (force back
to the bottom of the bowl) parts in all orientations except for
the desired one. Thus, a stream of oriented parts emerges at
the top after successfully running the gauntlet. Such a device
is said to feed a part, if it allows the part to pass in only one
specific orientation.
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Fig. 1. Vibratory track with blade B(ϕ, h, w). The depicted blade feeds the
leftmost part orientation.

Feeder manufacturing still relies on skill, experience and
ad-hoc guidelines. Currently, the largest cost of bowl feeders
is related to the design of the custom mechanisms used to feed
an individual part. The costs and time associated with design
of part feeders remains a barrier to flexible automation. In
a typical scenario, the feeder bowl takes up to 200 hours to
manufacture; 95 % of this time is spent designing the bowl
[14]. It is evident that automation of the design process would
greatly reduce the production costs and time.

In this light, researchers have used simulation [15], [16],
[17], [18], heuristics [2], [19], and genetic algorithms [20] to
aid in the design of vibratory bowl layouts. Geometric analysis
tools have been developed that help designers visualize the
configuration space of a given combination of part and bowl
layout [21]. Research to single reorientation and rejection
mechanisms has been focused at the design of traps, which
are devices constructed by removing sections of the track
[22], [23], [24]. The drawback of the latter research is that
the proposed devices only apply to two-dimensional parts.

Considering a broader context, the majority of the achieve-
ments in the field of sensorless feeding apply to flat, two-
dimensional parts, or to parts where the face on which the
part rests is known beforehand [25]. Closest in spirit to our
work is the work by Berretty et al. on reorienting polyhedral
parts with a sequence of fences and tilted plates [26].

In this paper, we narrow the gap between industrial bowl
feeders and the scientific work on sensorless feeding by
introducing a powerful new 3D geometric feeding primitive:
the blade. Blades combine the reorientation functionality of
fences [2], [6], [7] with the rejection functionality of traps [22],
[23], [24] into a device that can feed a broad class of 3D



Fig. 2. A side view of the blade feeding the fluorescent fixture mount.
Normally, parts fall off the side of the track as illustrated in Fig. 1, but for
practical reasons we mimicked this mechanism with the (black) cut-out in the
track. The leftmost orientation is fed by the blade, the rightmost orientation
will after reorientation end up as the leftmost orientation and thus will also
survive the blade, while the middle two orientations will be rejected.

parts by reorienting and rejecting all but one orientation. The
design of blades is inspired by similar devices used in existing
bowl feeder systems [13]. Due to its simplicity, the proposed
primitive allows for automated design.

A blade is a horizontally mounted convex polygonal metal
plate attached to the feeder wall. This plate is parallel to the
track and consists of a triangular shaped segment and a rect-
angular shaped segment (see Fig. 1). A blade is characterized
by three parameters: The blade angle, ϕ, expressing the slope
of the triangular segment. The blade height, h, specifying
the distance between track floor and blade. The blade width,
w, which is the width of rectangular shaped segment. Other
modeling aspects have no relevant effect on the blade-part
interaction, hence a blade can be described as B(ϕ, h,w).

Let us first introduce several assumptions and modeling
aspects, before providing an intuitive idea of how blades
operate. We consider rigid three-dimensional polyhedral parts
of a single type, all of which are assumed to be identical. As
in the earlier works on mechanisms for vibratory feeders, we
assume these parts move along a flat track in a quasi-static
manner without interfering with each other. We also assume
the position of the center of mass C to be known, as it dictates
the stability of the part. Throughout the paper, we assume zero
friction between the part and the blade. While moving up the
track, a part rests on the track in a stable pose; that is, the part
rests on the track floor and against the track wall, where both
contacts support C. The stable floor contact is the result of
gravity, while a slight tilt of the feeder track assures a stable
wall contact. Finally, the part is rejected, i.e. falls of the track,
when its center of mass is no longer supported by the track
floor. The radius of the helical track is assumed to be large
compared to the dimensions of the part, thus allowing us to
approximate the section of the track as linear.

Intuitively, the blade operates as follows. A part moves up
the track toward the blade in an arbitrary stable pose. As soon
as it reaches the blade, the part starts moving along the edge of
the triangular segment and, consequently, at some point breaks
contact with the track wall. Simultaneously, the part changes
its orientation as it moves from its stable pose against the

Fig. 3. A top view of the same setup as in Fig. 2.

track wall to a stable pose against the blade edge. The specific
reorientation of the part depends on both the blade height and
blade angle. From the triangular segment, the part moves onto
the rectangular segment whereat the rejection of parts takes
place. The rejection depends on the blade width, as the blade
width dictates whether C is supported by the track floor. Now,
to realize the desired feeding property of the blade, we select
a width such that all but one part orientation is rejected. The
role of the reorientation phase is to manipulate the stable track
poses such that such a blade width exists.

Let us formalize our problem definition. Our goal is to
develop a procedure for the automated design of blades; the
procedure is complete in the sense that it identifies all existing
valid blade designs. It receives as input the polyhedral part P
along with its center of mass center C. The procedure either
outputs the set S of all valid blade designs that feeds P or
reports that no such blade exist. As a forward note on future
research, we remark that S may serve as the starting point
for post-processing procedures to identify the blade design
that best satisfies a desired set of criteria such as feed-rate
optimization or insensitivity to tolerances.

We have conducted a physical experiment where we suc-
cessfully constructed a blade to feed a concave fluorescent fix-
ture mount (see Fig. 2 and 3). These preliminary experimental
results show the practical applicability of the proposed feeding
device. In addition, our experimental efforts have provided us
several insights into practical issues of our approach. Based
on these insights, we make several practical notes throughout
the paper, which aim to provide an intuition of how theory
translates to practice.

This paper is organized as follows. In section 2, we discuss
the part-blade interaction in more detail and provide a number
of definitions. In section 3, we first provide an intuitive
explanation of our procedure and continue with a discussion
at a more detailed level. We conclude in section 4 with a brief
summary, several remarks and points of future work.

II. MODELING THE BLADE

We will first address the track poses which are the possible
poses of P whilst it moves up the track. The second subsection
provides a similar discussion on blade poses which are stable
poses of P against the edge of the blade. We connect these
two concepts in subsection three by explaining how the blade
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Fig. 4. Side and top view (P f
⊥) of a stable track pose. There exist four

possible wall contacts for the depicted floor contact, which correspond to the
four edges of the rectangular convex hull of P f

⊥.

reorients P from a track to a blade pose. We conclude with a
subsection on the rejection mechanism of the blade.

We can split the blade into two segments. Firstly, the sloped
segment of the blade, the reorientation segment, which is
responsible for reorienting the part as well as transporting the
part away from the track wall. Secondly, the blade segment
parallel to the wall, the rejection segment, which is responsible
for rejecting undesired part orientations.

A. Track Poses

A polyhedral part in three-dimensional space has three
rotational degrees of freedom. While moving up the track,
P settles in a stable pose on the track, thus discretizing its set
of possible orientations. A stable track placement consists of
two stable contacts, namely the contact with the (track) floor
and with the (track) wall .

A stable floor contact is a placement in which P rests on the
floor with a face of its convex hull that supports C. Observe
that such a contact discretizes two of the three degrees of
rotational freedom. In the remainder of this paper, we refer
to a stable floor contact simply as a floor contact. We denote
P in a given floor contact by P f , where f ∈ {1, . . . ,Σf}
specifies the stable convex hull face on which P rests. Note
that O(Σf ) = O(n), where n is the number of vertices of P .

We assume that blade interaction does not change the floor
contact of P . Our physical experiments show that for eccentric
parts this assumption can be unrealistic, because these parts
may topple for certain combinations of floor contacts and
relatively large blade heights. This behavior is a subject for
future research.

Let us now turn to the second aspect of a stable pose, the
stable wall contact, which is ensured by the earlier mentioned
track tilt. This contact discretizes the remaining degree of
freedom, the roll orientation, which is the rotation about the
axis perpendicular to the floor contact of P f . Let P f

⊥ be the
orthogonal projection of P f on the floor. A stable wall contact
for P f corresponds to a roll orientation in which P f rests with
a stable edge of P f

⊥ against the track wall (see Fig. 4).
Putting the above together, we denote a (stable) track pose

as P f
e , where e ∈ {1, . . . ,Σe} specifies the stable edge of

P f
⊥ with which P f

e rests against the track wall. For each floor
contact applies O(Σe) = O(n), hence in total O(ΣfΣe) =
O(n2) track poses exist.
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Fig. 5. Side view and cross-section P f(h) of a stable blade pose. There exist
eight possible blade contacts for the depicted floor contact and blade height,
which correspond to the eight stable edges of the convex hull of P f(h).

As a notational remark, we note that throughout the paper
the combination of superscript f and subscript e, e.g. P f

e ,
indicates that a constant, variable or function is tied to one
specific track pose, i.e., to a unique combination of floor and
wall contact. Furthermore, the superscript f notation, e.g. P f ,
refers to a part for which we only consider the floor contact.

B. Blade Poses

Let us start with two notes on the modeling of the blade
itself. We model B as a planar surface which is parallel to the
track and defined by the earlier introduced parameters. Let us
refer to the plane in which B lies as the blade plane.

Sharing the same concept of floor contact, the blade pose
differs from the track pose in that the stable wall contact
is replaced by a stable blade contact. Similar to the wall
contact, the blade contact discretizes the roll orientation of P f ,
however, the discretization now depends on the blade height.

More precisely, the blade height h selects a cross-section of
P f with which P f rests against the blade. This cross-section,
denoted by P f(h), is the polygonal intersection of P f and the
blade plane. The location of the center of mass of P f(h) is the
orthogonal projection of C onto the blade plane (see Fig. 5).

Summarizing, given a blade at height h, a stable blade
pose is a combination of a stable floor and blade contact,
where the latter is a stable placement of P f(h) against the
edge of the blade. We denote a blade pose as P f

θ , where
θ specifies the roll orientation with respect to a fixed world
frame. The combination of superscript f and subscript θ, e.g.
P f

θ , indicates that a constant, variable or function is tied to
one specific blade pose.

C. Part Reorientation

We start off with a general notion. A core concept in our
approach is that we model reorientation and the subsequent
rejection separately for each track pose P f

e ; i.e., for each P f
e ,

we model the effect of the blade parameters ϕ, h and w. The
resulting set of P f

e models enables us to quickly determine
the effect of any given B = B(ϕ, h,w) on all track poses.

With this concept in mind, we discuss how the reorientation
segment of B rotates a given P f

e to a P f
θ . We note that

this reorientation only depends on the choice of ϕ and h.
Furthermore, recall that the reorientation process only affects
the roll orientation of P f

e , which we will denote by θf
e . In the

following, we respectively address the role of h and ϕ.
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Fig. 6. Side view (fig. A) en top view (fig. B) of the situation just before
the reorientation of the depicted fluorescent fixture mount. The gray polygons
depict P f

e (h), which features two stable roll orientations θ1 and θ2. Blade
angle intervals 〈ϕl, ϕa] and [ϕa, ϕu〉 respectively map P f

e to P f
θ1

(fig. C)

and to P f
θ2

(fig. D).

As explained in section II-B, height h selects a polygonal
cross-section P f

e(h) of P f
e with which the blade interacts.

Hence, the reorientation of P f
e for a fixed h = H effectively

is the planar reorientation of P f
e (H), and visa versa.

This brings us to the role of the blade angle ϕ. The choice
of ϕ determines how B reorients polygon P f

e(H) from θf
e to a

new roll orientation θ′, and thus, how P f
e reorients to P f

θ′ . We
will briefly discuss this mechanism (see [6] for more details).

Let us denote the allowed ϕ-interval as [ϕl, ϕu], where the
lower and upper bound ϕl and ϕu depend on various aspects
such as track tilt, part-blade friction, desired feed-rate and the
amount of track available for the blade device. Furthermore,
the convex hull of P f

e(H) features one or more stable edges
which correspond to a set of θ. Let Θf

e(H) = {θ1, . . . , θk} be
the ordered sequence of stable θ of P f(H) (see Fig. 6).

The general idea of the reorientation mechanism is as
follows. For a given h = H , the blade angle range [ϕl, ϕu]
can be split in sub-intervals, where each subinterval reorients
P f

e(H) from θf
e to one θi in Θf

e(H) (see Fig. 6). Expressing
this mechanism in terms of track and blade poses, we can
summarize the reorienting effect of B as follows: For a given
P f

e , the set of blades at h = H can be grouped into subsets
which correspond to continuous sub-intervals of [ϕl, ϕu]; all
blades in one subset map P f

e to the the same P f
θ with θ in

Θf
e(H).

Next, let us review an interesting side effect of the reorienta-
tion phase. By choosing the right ϕ and h, multiple track poses
with the same floor contact can be reoriented into one blade
pose. This effect is important to take into account as otherwise
the algorithm may discard potential solutions. Moreover, this
phenomenon can be used to substantially increase the feed-rate
of the blade. E.g. in our experiment, four P f

e have the same
floor contact as the P f

θ outputted by B; through the right blade
design, we can reorient all four P f

e to this output P f
θ , hence

substantially increasing the feed-rate of B.
We close this subsection with a practical note. To guide the

part from the reorientation segment to the rejection segment
without changing its blade pose, we connect these segments
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Fig. 7. Side view and top view of two blade poses from our experimental
setup, where the left orientation is outputted by the experimental blade. The
depicted blades illustrate the critical blade width wtrack−d(Cf

θ
, B) for both

poses.

by a curve in the spirit of Brokowski et al. [7]. Their approach
accommodates both convex and concave parts.

D. Part Rejection

At this point, the blade has reoriented P f
e into a P f

θ which
then arrives at the rejection segment. Recall that P i

θ is rejected
when the floor does not support the center of mass of P f

θ

anymore. More precisely, rejection occurs when the orthogonal
projection of C on the floor plane is no longer contained
within the track floor. Although rejection can already occur
on the reorientation segment, we only consider rejection of
blade poses on the rejection segment, because the former may
occur if and only if the latter occurs.

The rejection of P f
θ depends on the blade width. We capture

this with the notion of critical blade width, which is the
maximum blade width that P f

θ survives. The critical blade
width is defined as wtrack − d(Cf

θ , B), where wtrack denotes
the track width and d(Cf

θ , B) denotes the distance between
the projection of C and the rejection segment in P f

θ⊥ (see
Fig. 7). The value of wtrack is chosen such that any blade
pose resting against the rejection edge is free of the track
wall. Furthermore, note that C can be underneath the blade,
in which case d(Cf

θ , B) is negative. We see in Fig. 7 that if
the blade width is larger than wtrack−d(Cf

θ , B), then C is no
longer supported; hence, the corresponding blade rejects P f

θ .
As a brief digression to a scenario with friction, we note that

certain combinations of blade designs and part poses may yield
a risk that the blade prevents the part from falling back into the
bowl. For an intuitive understanding of such events, imagine
the leftmost case in Fig. 7 with a slightly larger blade width
such that the depicted track pose would become unstable. In
our frictionless setting, however, such events do not occur.

III. PROCEDURE FOR BLADE DESIGN

In the first subsection, we provide an intuitive sketch of
our procedure. The second subsection then zooms in on the
building blocks of the procedure, which are the functions that
model the effect of the blade parameters on a given track
pose. The third and last subsection discusses the use of these
functions to identify valid solution set S.

A. Overview Procedure

As explained before, a blade is defined by three parameters:
height h, blade angle ϕ and width w. These parameters span



a three-dimensional space, the blade space, where each point
describes a unique blade. We will forge the concepts from
the previous section into a function in blade space, a function
that describes the impact of the blade parameters on a given
track pose. Let us consider an arbitrary P f

e .

Depending on the choice of ϕ and h, the reorientation
segment transfers P f

e into some blade pose P f
θ . As explained

in section II-D, once we have P f
θ , we can easily calculate the

corresponding critical blade width. Concatenating these two
steps, we can conclude that the choice of ϕ and h directly
determines the critical blade width that P f

e can survive. We
capture this relation in the critical function ωf

e (ϕ, h) that maps
ϕ and h to the corresponding critical blade width.

Observe that a critical function describes a surface in the
blade space. This surface features a convenient property,
namely a point above the surface corresponds to a blade
rejecting P f

e , while any point below the surface corresponds
to a blade that P f

e survives. The next subsection provides a
more detailed explanation on the construction and properties
of these surfaces, which we refer to as critical surfaces.

Let us summarize, as this is an important aspect of our
procedure. Each critical surface corresponds to one specific
track pose and specifies the impact of all possible blade
parameterizations on this specific track pose. There exist
O(n2) track poses, thus the blade space contains O(n2)
critical surfaces. This construction allows us to determine for
any blade which track poses will survive.

Recall that our goal is to reject all but one track pose. In
terms of our geometric model, this goal translates to finding a
point in the blade space such that all but one critical surfaces
are below this point. Let us refer to such a point as a valid
solution s and to the set of such points as the valid solution
set S. The third subsection discusses the valid solution set in
more detail.

B. Critical Surfaces

In the previous section, we have introduced the concept of
critical functions. We now turn to the generation of ωf

e (ϕ, h)
which is the product of three subsequent modeling phases.

In the first phase, we abstract from blade contacts by
constructing a three-dimensional push function ρf for P f .
This function models the effect of reorienting P f by a push
action with a line and is defined in the push space. This three-
dimensional space is spanned by h, the height of the push line,
and the θ of P f before and after the push action.

In the second modeling phase, we tailor the push function
to model the reorientation of P f

e by the blade, resulting in the
reorientation function δf

e . More precisely, this function maps
P f

e for a given ϕ and h to a track pose P f
θ . The space in

which δf
e is defined, is spanned by the blade height h, blade

angle ϕ and the roll orientation θ of P f
θ .

Finally, in the third modeling phase, we model the rejection
of the reoriented P f

e by transforming its reorientation function
into a critical function ωf

e . As already explained, ωf
e is defined
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Fig. 8. Figure B illustrates ρf for P f in figure A. Furthermore, figure D
illustrates the planar push function for cross-section P f (H) of P f in figure
C. The cross-section of ρf at h = H shows the relation between ρf and the
planar push function.

in the blade space which is spanned by h, ϕ and blade width w.

Push Function
Let us start off by considering the blade at a fixed height
h = H and study the effect of the reorientation segment on the
cross-section P f(H) of P f . For this planar case, the effect of
the reorientation segment on P f(H) resembles that of a fence
mounted along a conveyor belt. As proposed by Peskin and
Sanderson [5] for such fences, this effect can be modeled as
pushing P f(H) with a line until the polygon assumes a stable
orientation against this push line. The effect of push actions
can be modeled by a push function [1], [2], [27] which are
step functions that map an initial to a final orientation, both
expressed relative to the push line. Hence, for a given h, the
reorientation by the blade can be captured as a step function
that maps an initial θ to a final stable θ of P f(H).

Let us consider the effect of h on the push function.
Intuitively, the result is a “stack” of continuously varying push
functions, where each cross-section at h=H is a standard push
function. As h changes, line segments of step function pop
up, grow, shrink, and disappear. Between their appearance and
disappearance, these segments sweeps out a continuous surface
in the push space (see Fig. 8). We refer to these surfaces as
push patches. They will eventually form the elementary units
in the critical surfaces. Recapitulating on the push function,
given an initial θ of P f and push height h, ρf (θ, h) outputs
the final stable θ of P f .

As a remark on the complexity of ρf , we note that each
ρf consists of O(n) push patches of O(1) complexity.

Reorientation Function
Next, we use ρf (θ, h) as a basis to construct the reorientation
functions δf

e (ϕ, h) for all track poses P f
e with floor contact



P f . Given a blade angle and height, δf
e (ϕ, h) specifies for P f

e

into which blade pose P f
θ it will be reoriented.

The step from ρf to δf
e effectively is nothing more then a

change in perspective. Just as the push function, δf
e maps a

combination of any given initial orientation and height to a
final stable orientation. However, where ρf takes as input the
orientation of P f relative to the fixed push line, δf

e changes
perspective and takes as input the orientation of the push line
relative to the fixed P f

e . In the latter case, the push line is the
reorientation segment and its orientation is blade angle ϕ. As
with ρf , the output of δf

e is the final stable θ of P f .
Henceforth, ϕ of δf

e uniquely maps to a push angle θ of δf .
Similarly, the interval of possible blade angles [ϕl, ϕu] of δf

e

uniquely maps to an equally sized θ-interval of δf .
In summary, the height intervals of ρf and δf

e are the
same, the ϕ-domain of δf

e directly maps to some θ-interval of
ρf , and both functions specify the stable θ of P f as output.
In other words, δf

e is a “slice” of ρf as defined within the
above described θ-interval. As a final remark, we note that
the complexity of δf

e is O(n), which is the same complexity
as that of its corresponding ρf .

Critical Function
Recall that given ϕ and h, δf

e maps P f
e to a stable blade pose

P f
θ . As explained in section II-D, the critical blade width for

P f
θ can be determined using basic geometry. Henceforth, the

transformation from δf
e to ωf

e is a one-to-one mapping from
blade pose to critical blade width. With ωf

e , we now have
the description of the critical surface of P f

e . Recall that the
push surface was comprised of patches. Due to the one-to-one
mapping, these patches are conserved and thus also comprise
the critical surfaces. We refer to the latter type of patches as
critical patches (see Fig. 9). Finally, the one-to-one mapping
preserves the complexity of δf

e , hence ωf
e consists of O(n)

critical patches of O(1) complexity.

C. Solution

The blade space contains O(n2) critical surfaces of com-
plexity O(n), each corresponding to a P f

e . Hence, the total
complexity of the critical arrangement is O(n3). Recall that
a point which lies above all but one surface in terms of
blade width represents a valid solution; that is, it represents
a blade that rejects all but one track pose. The valid solution
set S is the blade space between the upper envelope and the
critical surfaces one level down, where the upper envelope is
the surface comprised of all (partial) critical patches that are
maximal with respect to w [28]. In geometry, this space is
referred to as the n-level of an arrangement of surfaces [28].

In our surface arrangement, a level typically consists of
many subspaces due to the O(n2) surfaces interacting with
each other in or near the upper envelope. Consequently, the
valid solution set S typically consists of many subsets, each
featuring valid solutions with specific characteristics.

Once S is generated, the algorithm can reports this set of
valid blade designs. No valid solution exists when the n-level is
empty; in other words, when the entire upper envelope consists

0.5π
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Fig. 9. Figure B shows wf
e for the track pose in figure A and [ϕl, ϕr] =

〈0, π/2〉. The increase in slope of wf
e is explained by the increase of the

diameter of P f . Observe that the surface of wf
e is a slice of ρf (Fig. 8)

where the final θ orientation is transformed to the critical blade width.

of coinciding critical surfaces. The occurrence of the latter
is of course extremely unlikely. More general, we observe
that a (ϕ, h)-domain for which two or more critical surfaces
coincide, cannot serve as basis for a valid solution set, as the
corresponding set of blades would allow more than one blade
pose to survive. Blades may not exist for parts with geometric
symmetries; characterizing the class of parts for which blades
are guaranteed to exist is a subject for future research.

Having said this, let us revisit the phenomenon of multiple
track poses collapsing to one blade pose. Let P f

e1 and P f
e2

be two such track poses. In terms of their critical surfaces,
this phenomenon corresponds to the partial coincidence of
one or more critical patches of the critical surface of P f

e1

and P f
e2 . Coinciding critical surfaces in general eliminate

valid solutions, hence it is essential to take this phenomenon
into account when extracting the n-level of the critical surface
arrangement. In short, we deal with this by attaching to each
critical patch an identifier that expresses the corresponding
feature of P f . When two (partially) coinciding critical patches
with the same identifier are detected, then the corresponding
blades will not be discarded as valid solutions.

Geometric algorithms exist to calculate the n-level of our
critical surface arrangement [28]; these algorithms typically
apply a divide-and-conquer approach in combination with ver-
tical cell decomposition. Their polynomial worst-case running
times can in theory be of relatively high degree, but we
anticipate that the running time in practice remains far below
below the worst-case bounds.

IV. CONCLUSION

We have presented a new geometric primitive for vibratory
bowl feeders, which receives a stream of identical polyhedral
parts in arbitrary stable pose as input and outputs parts in one
single pose. A blade first reorients the parts from their arbitrary
track poses to an intermediate blade pose, after which all but
one blade poses are rejected back into the bowl. Under the
assumption that the motion of the part is quasi-static and parts
do not topple during blade interaction, our complete procedure
reports either all possible single blade solutions or that no
solution exists. We have experimentally shown the practical
applicability by constructing a blade that feeds a fluorescent
fixture mount.



We anticipate that the proposed procedure generalizes from
polyhedra to semi-algebraic 3D parts. The ground for this
anticipation is work by Rao and Goldberg [29] on 2D grasp
functions for non-polygonal parts. These functions are very
similar to 2D push functions which form the basis of our crit-
ical function. Furthermore, we anticipate that the assumption
of zero friction between the part and the blade can be partially
relaxed by using a result by Berretty et al. [30]. Berretty et
al. model Coulomb friction for planar part-fence interaction
which is very similar to our part-blade interaction.

Our aim in this paper has been to take a first step in the
design of complete algorithms for three-dimensional parts in
the context of vibratory bowls. Near future research is the
adaptation of existing geometric algorithms such that the valid
solution space can be generated as efficiently as possible.
A second subject to be addressed is the assumption that
interaction between part and blade does not change the floor
contact of the part; this assumption may be unrealistic for
certain combinations of thin parts and large blade heights.

Further down the road, we identify three additional chal-
lenging problems. A first interesting problem is the application
of a sequence of blades instead of one blade. We conjecture
that this extension allows a further optimization of for example
feed rate and insensitivity to tolerances. Secondly, in light
of reconfigurable part feeders, it is of interest to augment
the proposed procedure to generate blade designs within
limitations imposed by an adjustable hardware implementation
of the blade. And thirdly, given the complete solution set S
output by our procedure, a promising research direction lies
in the design of algorithms to post-process S in order to
identify blade designs that best satisfy criteria such as feed-
rate optimization or insensitivity to tolerances.

In conclusion, blades introduce a powerful new geometric
primitive for feeding 3D parts. By combining properties of
fences and traps, blades can actively reorient or reject ori-
entations to feed a broad class of industrial parts. Further
experiments and research are needed so that blades can be
incorporated into a truly algorithmic part feeding system.
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