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Abstract— This paper explores how Cloud Computing can
facilitate grasping with shape uncertainty. We consider the most
common robot gripper: a pair of thin parallel jaws, and a class
of objects that can be modeled as extruded polygons. We model
a conservative class of push-grasps that can enhance object
alignment. The grasp planning algorithm takes as input an
approximate object outline and Gaussian uncertainty around
each vertex and center of mass. We define a grasp quality
metric based on a lower bound on the probability of achieving
force closure. We present a highly-parallelizable algorithm
to compute this metric using Monte Carlo sampling. The
algorithm uses Coulomb frictional grasp mechanics and a fast
geometric test for conservative conditions for force closure. We
run the algorithm on a set of sample shapes and compare
the grasps with those from a planner that does not model
shape uncertainty. We report computation times with single
and multi-core computers and sensitivity analysis on algorithm
parameters. We also describe physical grasp experiments using
the Willow Garage PR2 robot.

I. INTRODUCTION

Although networked robotics has a long history [1], Cloud
Computing is a powerful new paradigm for massively paral-
lel computation and real-time sharing of vast data resources.
Cloud Robotics has the potential to significantly improve
robots working in human environments in four ways: 1)
indexing vast libraries of annotated image and object models
with information on physical interactions, 2) massively-
parallel sample-based motion planning and uncertainty mod-
eling, 3) sharing of outcomes, trajectories, and dynamic
control policies for commonly-used robot mechanisms such
as Willow Garage’s PR2, 4) obtaining on-demand human
guidance when needed.

One area that has not, to our knowledge, been studied
is how the second aspect of the Cloud can be used to
facilitate grasping objects with uncertainty. Computer vision
can approximate geometric shape and pose, and are making
great advances in recognition, using indexed databases such
as Google Goggles, and these are being integrated with robot
manipulation systems [22]. A fundamental challenge, even
with perfect recognition, is uncertainty in shape, because of
manufacturing tolerances, and mechanics, because of limits
on sensing during grasping.

This paper describes initial work toward a method that
can leverage Cloud Computing to plan grasps with shape
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Fig. 1. Shape uncertainty model. On the left, circles with a radius of one
standard deviation are drawn around each vertex and the center of mass.
On the right, the nominal object is plotted over 100 sampled perturbations.

uncertainty. We currently take a conservative approach: we
generate a statistical sample of object shape perturbations
to find the value of a quality metric that estimates a lower
bound on the probability of force closure for a class of grasps
called zero-slip push grasps, which can be rapidly evaluated
without simulation. We then combine these results, weighted
by their probability of occurrence, to estimate a lower bound
on the probability of achieving force closure.

We validate our method through extensive testing in sim-
ulation and on the PR2 mobile manipulator. Our simulation
results suggest that we can generate a set of grasps quickly
for a parts with complex geometry. The experiments on
the PR2 suggest that our method produces grasps that are
significantly more reliable those planned without considering
shape uncertainty.

Although our method is not currently implemented in the
Cloud, extending it to this domain through parallelization
is straightforward, and we demonstrate a proof-of-concept
parallel implementation.

II. RELATED WORK

While multi-agent cooperation has a long history in
robotics research, only recently has research focused on
networked robots sharing information to accomplish tasks
widely separated in time and space [26] [38]. The intro-
duction of Cloud Computing can allow computation to be
offloaded from robots [4], as well development of databases
that allow robots to reuse previous computations in later tasks
[11]. Grasping could benefit from this effort, since grasps
computed for an object can be applied to similar objects
encountered later [10] [16] [18] [27], even for different
robots. This allows the construction of grasp databases that
can be shared and referenced by multiple robots [18] [22].

Many recent studies in robotic grasping focus on improv-
ing grasps on known objects [8] [32] [33] [35] that do not
take into account uncertainty. The work in robotic grasping



that addresses uncertainty largely focuses on uncertainty
in part pose [5] [12] [30]. Methods for sensorless part
orientation [6] [17] can also be used in the presence of
uncertain part pose. However, these methods do not take into
account uncertainty in the geometry of the object.

Several studies use contact sensors to improve grasp
quality in the presence of uncertain part geometry [15]
[19]. However, many robotic grippers do not have contact
sensing capability. Even when sensing is not explicitly used
to determine geometry, it may be implicitly assumed to be
present, as is the case when pinch grasps are required, since
the object must not be moved by contact with the gripper
[9] [21] [36] [37].

Push manipulation of objects has been extensively inves-
tigated by Mason [24] [25] and others [3] [23]. Performing
pushing operations with a gripper to reduce pose uncer-
tainty has been demonstrated by Dogar and Srinivasa [12].
However, these methods, again, do not take into account
uncertainty in the shape of the object.

One approach to accommodating uncertainty in the part
geometry is to use a compliant gripper. Dollar and Howe [13]
proposed a four-fingered hand design that uses compliance
in the hand to achieve successful grasps without specially
considering the geometry of the object. However, the under-
actuation of the hand limits its usability with parts that may
have fragile regions that cannot be contacted by the gripper.

Saxena et al. [34] used machine learning methods to
determine grasp points directly from stereo images of novel
objects without an explicit object model, which implicitly
assumes object shape uncertainty. Since it does not have an
explicit object model, it cannot incorporate prior information
about the object such as object shape or uncertainty, either
known or estimated. An explicit shape uncertainty model for
grasping was proposed by Christopoulos and Schrater [9]
approximates the shape boundary with splines but does not
account for motion induced by contact from the gripper.

III. PROBLEM STATEMENT

We consider a parallel-jaw gripper, gripping an object from
above. We assume that we have a conservative estimate of
the coefficient of friction between the gripper and the object,
denoted µ.

We assume that the object can be modeled as an extruded
polygon to be gripped on its edges, resting on a planar work
surface, and that the object has an estimated nominal center
of mass, which may not be at the centroid. The gripper–
object interaction is assumed to be quasistatic, such that the
inertia of the object is negligible [29].

A. Shape Uncertainty Model
Uncertainty in the object shape is modeled as indepen-

dent, Gaussian distributions on each vertex and center of
mass, centered on their nominal values. The variance of
the distributions is an input. Other models exist for shape
uncertainty [7] [20] that use worst-case bounds rather than
probability distributions. One advantage of using probability
distributions is that we can use a Monte Carlo approach to
evaluate the effect of uncertainty on candidate grasps.

B. Zero-Slip Push Grasps with Force Closure

We consider grasps performed by a parallel-jaw gripper
on an object modeled as an extruded polygon. We consider
a class of push grasps that enhance object alignment, zero-
slip push grasps with force closure. We define this as grasps
in which the gripper pushes the object without slipping until
it rotates into alignment with the first gripper jaw (a zero-
slip push) and then completes force closure with the second
gripper jaw, as seen in Figure 2. Under this conservative
definition, any grasp involving slip of either gripper jaw is
not included.

Fig. 2. Snapshots of the execution of a zero-slip push grasp. The green
jaw makes the first contact, and the red jaw completes force closure.

The input to the algorithm is a list of edges defining a
non-intersecting polygon, denoted SI , and the variance of
the Gaussian uncertainty distributions for the vertices and
center of mass.

C. Quality Measure

We define a quality measure Q(g, S, θ) as a lower bound
on the probability that grasp g on object S will result in
force closure based on parameter vector θ. The output of the
algorithm is Q = {Q(g, S, θ) | g ∈ G(S)}, where G(S) is
the set of candidate grasps for object S. The best grasp and
Q-value are:

g∗ = arg max
g∈G

Q(g, S, θ)

Q∗(S, θ) = Q(g∗, S, θ)

D. Candidate Grasp Configuration Space

The configuration space is defined by a starting position
and orientation of the first gripper jaw, and a direction of
motion from this position. We assume that orientation of the
gripper jaw face is perpendicular to the direction of motion.

We reduce the configuration space from three dimensions
to two using nominal contact points to eliminate some of
the redundancies in grasp configurations. Candidate grasps
(denoted gij) are defined as the ordered pair (p̂i, φj), where
p̂i is a nominal contact point and φj is an approach angle.
A nominal contact point is the point on the boundary of the
nominal object that contact by the first gripper jaw would
occur. The set of nominal contact points is denoted P̂ . An
approach angle is an angle from the normal direction of the
object boundary (pointing into the shape) at p̂i. The approach
line is the line through p̂i along φj .



The actual initial contact point for a candidate grasp gij
on a perturbed object may not be near the nominal contact
point p̂i, as the approach line may intersect the object, or
some other part of the first gripper jaw may contact the
object first. The actual contact configuration corresponding
to candidate grasp gij on object S is cij,S = (p, ψ), where p
is the position of the gripper and ψ is the direction of the jaw
relative to the x-axis. Different candidate grasps may have
similar contact configurations; for example, if they approach
the same edge of the shape. Configurations are grouped into
sets of similar configurations denoted Cq,ψ , where ψ is the
same for all configurations in a set and q is a position that
describes the set, e.g., one of the p values in the set. The set
of similar configuration sets is denoted C.

IV. GRASP PLANNING ALGORITHM

Our algorithm, shown in Algorithm 1, first filters data
to remove noise from the contouring process. Using the
resulting filtered polygon, a Monte Carlo analysis is used:
it generates a set of candidate grasps, and creates object
perturbations drawn from the distribution. For each object
perturbation, the candidate grasps are evaluated to estimate
if they result in zero-slip pushes (see Section IV-D.1).
The successful zero-slip pushes are grouped into sets of
similar configurations (see Section IV-D.2), and conservative
conditions for force closure are evaluated. Finally, the overall
probability of achieving force closure for each candidate
grasp is estimated.

Algorithm 1: Zero-Slip Push Grasp Planning Algorithm.
Highlighted line numbers indicate parallelizable steps.

1 Filter SI into S0;
2 Filter S0 into SC ;
3 Determine nominal contact points P̂ on S0 using SC ;
4 Create candidate grasp set G from P̂ and Φ;
5 Create object perturbations S1, S2, . . . , SN of S0;
6 for Object Sk = S1, S2, . . . , SN do
7 for Candidate grasp gij ∈ G do
8 Estimate if gij results in zero-slip push of Sk;

end
9 Collect similar zero-slip push configurations C;

10 for Similar configuration set Cq,ψ ∈ C do
11 Estimate regions of force closure success on Sk;
12 for Contact configuration cq,ψ ∈ Cq,ψ do
13 Find corresponding gij for cq,ψ;
14 Predict force closure success sijk ∈ {0, 1}

of gij for Sk;
end

end
end

15 for Candidate grasp gij ∈ G do
16 Compute grasp quality Q(gij , S0, θ);

end

The algorithm uses several parameters, denoted as the
vector θ = [dI , dC , ρ,Φ, N ]. The shape from the contoured

image, SI , is filtered to produce a simpler polygon S0, and
this process takes a parameter dI that controls the degree
of filtering. The uncertainty in object shape and center of
mass described in Section III-A are also parameters. Three
parameters are used for generation of candidate grasps. A
second filtering parameter dC and a configuration density
parameter ρ are used to determine the set of candidate grasp
positions, and the set of candidate grasp orientations is a third
parameter, denoted Φ. The final parameter is the number of
object perturbations, N . We describe these parameters and
each step of our algorithm below.

A. Shape Filtering

We assume the input polygon (SI ) is produced from an
image of the object using an image contouring algorithm. Fil-
tering is performed on the noisy polygon using an extension
of the Ramer–Douglas–Peucker (RDP) algorithm [14] [31].
The RDP algorithm smooths a polyline using a distance pa-
rameter (for this step, dI ) that defines the maximum distance
a removed vertex can be from the resulting new edge. In our
extension to polygons, every pair of adjacent vertices are
tested by removing the edge between the vertices, smoothing
the resulting polyline, and forming a new polygon with fewer
edges by reconnecting the two vertices. The filtered polygon
with the fewest edges is selected and becomes the nominal
polygon (S0) for the remainder of the algorithm.

B. Generating Candidate Grasps

After filtering the input polygon, the algorithm then gener-
ates a candidate grasp set G = {gij = (p̂i, φj) | p̂i ∈ P̂ , φj ∈
Φ}. While each (p̂, φ) pair could be independently generated,
we use a fixed set of φ values as a parameter, and apply them
to a generated set of p̂ values.

We use a scale-invariant parameter to determine the num-
ber of p̂ values (i.e., |P̂ |) for the object, sample density, de-
noted ρ. For each edge, a set of p̂ values is generated, linearly
spaced with the number of points equal to ρ× length of edge

mean edge length .
To reduce the effect of complexity on ρ, this is computed on a
second filtered shape SC (using filtering parameter dC), and
the resulting points P̂ are projected back onto the nominal
shape S0. Candidate grasps that are occluded by other parts
of the shape are removed.

C. Sampling Object Perturbations

Before testing the candidate grasps, object perturbations
are created by sampling from the distributions of each vertex
and the center of mass. The number of object perturbations
is a parameter to the algorithm; see Section V-D.

D. Evaluating Object Perturbations

For each object perturbation, the candidate grasps are
evaluated to estimate whether they achieve zero-slip push
grasps with force closure.



1) Zero-Slip Push Conditions: The algorithm uses geo-
metric properties of the object to determine all candidate
grasps resulting in zero-slip pushes aligned with an object
edge for a given gripper width. The conditions for success
are as follows: the object purely rotates about the contact
point without slipping, the object rotates towards stability
with the gripper jaw (that is, the edge becomes aligned with
the gripper), and the gripper is not obstructed in becoming
aligned with the edge.

As shown by Mason [25], the motion of an object pushed
at a given contact point is determined by the friction cone
and the direction of pushing. The resulting constraint on
candidate grasps is shown in Figure 3.
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Fig. 3. Configuration space for fast analysis. The upper half of the figure
shows a gripper contacting the object at position d with contact angle
φ = −30◦, with inverse friction cone bounds b1 and b2 and perpendicular
distance r from the center of mass. Contact with this edge of the object
results in the configuration space shown below it; the shaded area is the
region where a zero-slip push occurs.

2) Collecting Similar Zero-Slip Push Configurations:
Before evaluating force closure on the candidate grasps that
result in zero-slip pushes, the zero-slip push configurations
for those candidate grasps are collected into sets of similar
configurations. A similar configuration set often contains all
the zero-slip pushes for some edge of the object. Because our
estimation of force closure for all positions on an edge can
be determined analytically, the estimated closure success of
all elements of a similar configuration set can be evaluated
simultaneously, as shown in Section IV-D.3.

3) Conditions for Force Closure: Force closure on an
object is achieved when the line between the contact points
on each side lies inside the friction cones of both contact
points [28]. If there are multiple contact points on a side,
there need be only one successful contact point for successful
force closure.

In our algorithm, force closure is considered to be achieved
under either of two conditions. First, if the second gripper
jaw contacts an edge and the contact direction is within the
friction cone, the gripper completes force closure. Second,

if the second gripper jaw contacts a convex vertex, and this
convex vertex is opposite a section of the first gripper jaw
that contacts the object, force closure is successful.

E. Probability of Achieving Force Closure

Once the candidate grasp conditions have been evaluated
for all object perturbations, the probability of achieving force
closure for that candidate grasp is estimated using a weighted
percentage, where the estimated success or failure on an
object perturbation is weighted by the probability of that
perturbation occurring.

V. GRASP PLANNING EXPERIMENTS

To test the algorithm in simulation, a set of images of
brackets were found on Google Image Search, and manually
contoured by tracing a polygon over the image. The shapes
produced by this method are shown as objects A through I in
Figure 4, along with three simpler, manually-created objects.
A comparison with the approach of ignoring uncertainty is
presented in Section V-B. We evaluated a large number of
parameter combinations, which is detailed in Section V-C.
In Section V-E, we report results from testing the parallel
aspects of the algorithm.

Except for where noted, tests used vertex variance of
0.2 times the maximum shape radius (measured from the
centroid to the vertices), a center of mass variance of 0.7
times the maximum shape radius, a gripper width 25% of
the maximum shape diameter (measured between vertices),
and a coefficient of friction of 0.7. The tests were run on a
Lenovo T420s laptop with a 2.70 GHz processor and 8 GB
of RAM, using MATLAB R2011a.

A. Results

For one parameter combination, the full results for two
objects are shown in Figures 5 and 6, and best grasp for
each of the shapes are shown in Figure 4. The parameters
for these figures were dC = 0, ρ = 1.5, and |Φ| = 5.

We observed that the algorithm usually did not choose
edges close to the center of mass. While this result can
seem counterintuitive, grasps close to the center of mass are
less robust under our assumptions because an edge close to
the center of mass has a smaller region in which zero-slip
pushes can be achieved. A perturbation in the center of mass
will move this region, invalidating a large number of grasps
originally in the region. This effect is seen on Objects C and
D. The maximum Q-value on the two horizontal edges of
Object D is 43.6. The best grasp on Object J is on an edge
close to the center of mass because the edges on either end
of the object are too angled to each other for reliable force
closure.

Object B, shown in Figure 6, demonstrates the effect of
requiring a zero-slip push. Grasps on the edges marked α
and β only have very low Q values, because most of each
edge is outside the inverse friction cone from the center of
mass, meaning any contact will result in slip. The large angle
between edges γ and α causes zero-slip pushes on edge γ
to fail to achieve our conservative force closure conditions.



Fig. 4. The test set of brackets. The g∗ grasps for parameters dC = 0,
ρ = 1.5, and |Φ| = 5 are depicted.

However, force closure can be achieved against the vertex
labeled τ , and this is reflected in the moderate Q value of
some grasps on edge γ.

Object C shows how uncertainty plays a large role in
objects with few zero-slip pushes. The grasp shown in
Figure 4 closes against protrusions on the opposite end of
the object. However, while it has the highest Q value, it is
not successful on the nominal shape. The second best grasp
contacts the narrow part of the object to the left of the center
of mass, and has a Q value of 39.6.

Objects F and H show how the differences in the shape
can have a large effect on the quality of grasps, given
equal uncertainty. Object F has a very high quality grasp
that contacts a flat edge and closes against a small edge
with a convex corner. The best grasp on Object H has the
same properties, but a much lower Q value. The difference
between the objects is that the first edge contacted by the
gripper is further from the center of mass on Object F,
which as mentioned above can be problematic, and that the
uncertainty in the opposite edges on Object H can cause the
gripper to contact edges that are more angled.

Object G has a problematic shape for the algorithm. The
size of the gripper prevents it from contacting the edges very
near the center of mass. The long, straight edges are outside

the inverse friction cone of the center of mass, meaning
an contact on them will slip. The ends of the object are
narrow and consist of several different edges, which, under
perturbation, can prevent zero-slip pushes or force closure
from being achieved.

Fig. 5. The algorithm results for object A, using dC = 0, ρ = 1.5,
and |Φ| = 5. The line segments indicate approach lines for the tested
nominal contact points, with the length indicating the Q-value relative to
other segments. The approach line with the highest Q-value is labeled.

Fig. 6. The algorithm results for object B, using dC = 0, ρ = 1.5, and
|Φ| = 5. The labels are used in Section V-A to illustrate various aspects of
the results.

B. Comparison with Ignoring Shape Uncertainty
We compared our results to a first-order grasp planner

ignoring shape uncertainty, which ran the algorithm simply
on the nominal object, without considering perturbations.
Generally, many candidate grasps are predicted to achieve
force closure on the nominal object. However, when subject
to uncertainty, many of these grasps become considerably
less desirable. For comparison, we ran 84 tests using various
parameter values (described in Section V-C), and for each
run, the candidate grasps predicted to achieve force closure
on the nominal object were tracked and their final quality
compared. On average, only 4% of these candidate grasps
were also the best grasps after 100 iterations of the algorithm.
After 100 iterations, the average Q-value of these candidate
grasps was only 58% of the value of Q∗.



Object Q∗ time (s) P2 P4 dC ρ |Φ|
A 80.8 24.6 1.6 3.0 0.06 1.5 5
A 83.2 31.5 1.8 3.2 0.03 1.5 5
A 85.8 45.9 1.8 3.4 0.09 3 5
A 88.8 242.2 1.8 3.7 0 7.5 9
B 29.0 15.1 1.7 3.0 0.06 1.5 5
B 62.9 21.2 1.7 3.1 0 1.5 5
B 63.0 269.1 1.6 3.7 0.03 20 9
B 67.1 65.7 1.8 3.4 0.03 7.5 5
C 28.6 16.4 1.8 3.4 0.06 1.5 5
C 41.9 24.1 1.8 3.3 0.03 1.5 5
C 59.6 31.9 1.8 3.4 0.09 3 5
C 64.9 142.9 1.9 3.7 0.03 10 5
C 73.5 118.2 1.9 3.7 0.09 7.5 9
C 76.3 466.0 1.8 3.7 0.03 20 9
D 93.1 17.2 1.8 3.1 0.06 1.5 5
D 95.5 37.2 1.8 3.3 0.09 5 5
D 96.3 229.0 1.7 3.6 0.03 20 9
E 92.4 25.4 1.8 3.3 0.06 1.5 5
E 95.2 119.5 1.8 3.5 0.09 15 5
E 96.3 147.6 1.8 3.6 0.03 10 5
F 97.2 31.3 1.8 3.3 0.06 1.5 5
F 97.2 576.1 1.6 3.7 0.03 20 9
F 99.0 134.0 1.9 3.6 0 7.5 5
G 2.6 8.2 1.7 2.8 0.06 1.5 5
G 5.2 25.8 1.7 3.3 0.03 1.5 5
G 13.1 156.4 1.7 3.6 0 7.5 9
G 15.8 103.7 1.7 3.5 0.03 10 5
H 29.4 16.2 1.7 3.2 0.06 1.5 5
H 74.6 23.5 1.7 3.1 0.03 1.5 5
H 74.6 36.0 1.8 3.3 0.09 5 5
H 84.8 91.2 1.8 3.6 0.09 7.5 9
H 87.8 145.5 1.8 3.7 0 7.5 9
I 67.8 50.0 1.9 3.7 0.03 1.5 5
I 75.4 27.0 1.8 3.4 0.06 1.5 5
I 79.3 358.8 1.8 3.7 0 10 5
I 80.2 63.0 1.8 3.6 0.09 7.5 5
I 85.2 792.4 1.4 3.8 0.03 20 9
J 72.7 11.6 1.6 2.8 0.09 3 5
J 92.1 7.7 1.5 2.5 0.06 1.5 5
J 96.0 39.1 1.7 3.2 0.09 15 5
J 97.9 93.3 1.6 3.4 0.03 20 9
J 98.1 45.5 1.7 3.4 0.09 7.5 9
K 12.6 3.8 1.5 2.4 0.06 1.5 5
K 78.1 9.9 1.6 2.8 0.09 3 5
K 98.9 64.1 1.6 3.4 0.06 20 9
L 83.4 16.8 1.7 3.0 0.09 3 5
L 86.5 31.8 1.7 3.1 0.09 7.5 5
L 89.5 8.8 1.5 2.6 0.06 1.5 5

TABLE I
GRASPS PLANNED FOR OBJECTS IN FIGURE 4, SHOWING OBJECT NAME,

VALUE OF Q∗ , RUNTIME USING MATLAB R2011A ON A 2.70 GHZ

COMPUTER WITH 8 GB OF RAM, PARALLEL SPEEDUP FOR TWO AND

FOUR CORES, FILTERING PARAMETER dC , SAMPLE DENSITY ρ, AND

NUMBER OF APPROACH ANGLES |Φ|, USING µ = 0.7. P2 AND P4
INDICATE THE SPEEDUPS GAINED FROM RUNNING A PARALLEL

IMPLEMENTATION ON THE TWO CORE LENOVO MENTIONED ABOVE,
AND A FOUR CORE, 3.4 GHZ COMPUTER WITH 16 GB OF RAM

RUNNING MATLAB R2010A, RESPECTIVELY.

C. Sensitivity Analysis

We performed a sensitivity analysis on the parameters for
the candidate grasp generation step in the algorithm, which
are the maximum distance for the filtering step dC , sample
density ρ, and the approach angle set Φ.

The number of nominal contact points is critical to max-
imizing the value of Q∗ grasps. For a given edge in contact
with the first gripper jaw, force closure depends on the
opposite edges, which define regions where closure is or is
not achieved. With increasing object complexity, the regions
become smaller and more numerous, and edges must be
covered more densely with contact points to ensure that the
regions in which force closure is achieved are found.

To evaluate combinations of values for the parameters,
the parameter space was gridded and tested. For filtering,
the scale-invariant measure used was fraction of maximum
object radius. Increasing values were used until it was judged
that large features of the test objects were being filtered out.
For the approach angles, a wide, dense range of approach
angles were tested, 15 linearly spaced directions from −45◦

to 45◦, inclusive, along with a high value of points per mean
edge and no filtering. For all objects tested, the maximum
magnitude was never above 13◦. We subsequently chose
±15◦ as the range bounds. For sample density (ρ), the value
was increased until no further gain in Q∗ was seen, and this
was used as an upper bound.

The parameter grid included four filtering distances, three
sets of approach angles, and seven values for points per
mean edge. The filtering distances were 0 (i.e., no filtering
other than combining collinear edges), 0.03, 0.06, and 0.09.
For approach angles, three sets of linearly spaced points
between −15◦ and 15◦, inclusive, were used, with 5, 9, and
15 points, respectively. Only odd values were chosen such
that 0◦ would be included. For sample density, the following
seven values were used: 1.5, 3, 5, 7.5, 10, 15, and 20.

The results from the gridded parameter space illustrated
the trade-off between Q∗ and runtime. Additionally, the
discontinuous nature of force closure on polygonal objects
was apparent: holding other parameters constant, increasing
the sample density sometimes decreased Q∗, when a small
region of an edge had the highest probability, and was
alternately hit or missed by the spacing of the nominal
contact points.

D. Number of Object Perturbations

Reducing the set of object perturbations reduces the run-
time of the algorithm, but runs the risk of individual samples
having a large effect on the result. We investigated the effect
of this trade-off by generating 500 object perturbations and
running the algorithm on each sequential subset of 1 to
500 perturbations. The value of Q∗ over this range can
be seen in Figure 7. In the first few iterations, there are
some candidate grasps that are predicted to achieve force
closure for all object perturbations tested so far, so the
maximum probability is at 1. By the point where 100 object
perturbations had been processed, the maximum probability
was always within 5% of its value at 500 perturbations.



Additionally, g∗ stopped changing before 100 perturbations
for all but one object (that is, the best grasp was identified
early). This suggests a convergence heuristic: once the Q∗

stops changing by more than 5% after testing a new object
perturbation, perhaps measured over a moving window, the
best grasp has likely been found and the algorithm can
terminate.

Fig. 7. Q∗ vs. number of object perturbations evaluated for objects A-I
in the test set. The point at which g∗ stops changing is marked with an
asterisk.

E. Parallel Tests

Using the MATLAB Parallel Computing Toolbox, the
algorithm was tested in MATLAB R2011a on a two core, 2.7
GHz computer with 8 GB of RAM and in MATLAB R2010a
on a four core, 3.4 GHz computer with 16 GB of RAM.
Parallelization was implemented at the object perturbation
step, such that multiple object perturbations could be tested
simultaneously. The resulting speedup over the non-parallel
running time on the same computer is listed in Table I. The
average speedup was 1.7 on the two core computer and 3.3
on the four core. This suggests that, with the limitation of
some overhead, the speedup scales with number of cores.
Further testing with a massively-parallel implementation in
the Cloud could verify this.

VI. GRASP EXECUTION EXPERIMENTS

An object was tested with the Willow Garage PR2 robot
[2], a two-armed mobile manipulator. The experimental setup
can be seen in Figure 8. Using a whiteboard as a work
surface, the object was imaged and contoured to get the shape
using the OpenCV image processing library. The algorithm
was run using parameters dI = 0.002, dC = 0, ρ = 10, and
|Φ| = 5.

For Object M, an electrical plug, three representative
grasps were tested (shown in Figure 9), with five trial runs
each. The first grasp, with Q = Q∗ = 84.4, achieved force
closure for all five trials. The second grasp, with Q = 54.5,
also achieved force closure for all five trials. The third grasp,
with Q = 23.3, caused the object to rotate out of alignment

Fig. 8. Experimental setup for Object M.

Fig. 9. Grasps tested for Object M.

and failed to achieve force closure for all trials. This grasp
failed in the test because of positioning error in the gripper
and in the actual center of mass versus in the model.

VII. DISCUSSION AND FUTURE WORK

The algorithm presented in this paper generates samples of
object shape perturbations to compute the value of a quality
metric that estimates a lower bound on the probability of
force closure for zero-slip push grasps. The algorithm is
highly parallelizable as described in Section V-E and initial
results suggest it could be performed in a Cloud Computing
architecture for much greater speedups. A framework like
MapReduce may also be used to collect similar stable push
configurations.

In future work we will explore how the algorithm might
be improved using adaptive sampling, to quickly elim-
inate poor grasps, and how to relax the zero-slip as-
sumption. We are also interested in seeing how the ap-
proach can be used for manufacturing and automation
where tolerances are smaller than in the robotics context.
The algorithm also may be useful for computing allow-
able tolerance ranges and for Design for Manufacturability.
The results of this paper: code, data, and benchmarks,
are available at http://goldberg.berkeley.edu/
archive/cloud-grasping-icra-2012/.
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Karl F. Böhringer, and Yan Zhuang. Computing tolerance parameters
for fixturing and feeding. Assembly Automation, 22(2):163–172, 2002.

[8] Jae-Sook Cheong, Heinrich Kruger, and A Frank van der Stappen.
Output-Sensitive Computation of Force-Closure Grasps of a Semi-
Algebraic Object. IEEE Transactions on Automation Science and
Engineering, 8(3):495–505, July 2011.

[9] V.N. Christopoulos and Paul Schrater. Handling shape and contact
location uncertainty in grasping two-dimensional planar objects. In
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, pages 1557–1563. IEEE, 2007.

[10] Matei Ciocarlie, Kaijen Hsiao, E.G. Jones, Sachin Chitta, R.B. Rusu,
and I.A. Sucan. Towards reliable grasping and manipulation in
household environments. In Proceedings of RSS 2010 Workshop
on Strategies and Evaluation for Mobile Manipulation in Household
Environments, pages 1–12, New Delhi, India, 2010.

[11] Matei Ciocarlie, Caroline Pantofaru, Kaijen Hsiao, Gary Bradski, Peter
Brook, and Ethan Dreyfuss. A Side of Data With My Robot. IEEE
Robotics & Automation Magazine, 18(2):44–57, June 2011.

[12] Mehmet R Dogar and Siddhartha S Srinivasa. Push-grasping with
dexterous hands: Mechanics and a method. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
2123–2130. IEEE, October 2010.

[13] A. Dollar and R. Howe. The SDM Hand: A Highly Adaptive
Compliant Grasper for Unstructured Environments. Experimental
Robotics, pages 3–11, 2009.

[14] David H Douglas and Thomas K Peucker. Algorithms for the
Reduction of the Number of Points Required to Represent a Digitized
Line or its Caricature. Cartographica: The International Journal
for Geographic Information and Geovisualization, 10(2):112–122,
October 1973.

[15] Javier Felip and Antonio Morales. Robust sensor-based grasp primitive
for a three-finger robot hand. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1811–1816. Ieee, October
2009.

[16] Jared Glover, Daniela Rus, and Nicholas Roy. Probabilistic Models
of Object Geometry for Grasp Planning. In Robotics: Science and
Systems, Zurich, Switzerland, 2008.

[17] Ken Goldberg. Orienting polygonal parts without sensors. Algorith-
mica, 10(2-4):201–225, October 1993.

[18] Corey Goldfeder and Peter K. Allen. Data-Driven Grasping. Au-
tonomous Robots, 31(1):1–20, April 2011.

[19] Kaijen Hsiao, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Grasp-
ing POMDPs. In IEEE International Conference on Robotics and
Automation, pages 4685–4692. Ieee, April 2007.

[20] Leo Joskowicz, Yaron Ostrovsky-Berman, and Yonatan Myers. Ef-
ficient representation and computation of geometric uncertainty: The
linear parametric model. Precision Engineering, 34(1):2–6, January
2010.

[21] Ellen Klingbeil, Deepak Rao, Blake Carpenter, Varun Ganapathi,
A.Y. Ng, and Oussama Khatib. Grasping with Application to an
Autonomous Checkout Robot. In IEEE International Conference on
Robotics and Automation, 2011.

[22] James J. Kuffner. Cloud-Enabled Robots. In IEEE-RAS International
Conference on Humanoid Robotics, Nashville, TN, 2010.

[23] K.M. Lynch. The mechanics of fine manipulation by pushing. In
IEEE International Conference on Robotics and Automation, pages
2269–2276. IEEE Comput. Soc. Press, 1992.

[24] M. T. Mason. Mechanics and Planning of Manipulator Pushing
Operations. The International Journal of Robotics Research, 5(3):53–
71, September 1986.

[25] M.T. Mason. Manipulator grasping and pushing operations. Technical
report, Massachusetts Inst. of Tech., Cambridge (USA). Artificial
Intelligence Lab., 1982.

[26] G. McKee. What is Networked Robotics? Informatics in Control
Automation and Robotics, 15:35–45, 2008.

[27] Antonio Morales, Tamim Asfour, Pedram Azad, Steffen Knoop, and
Rudiger Dillmann. Integrated Grasp Planning and Visual Object
Localization For a Humanoid Robot with Five-Fingered Hands. 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5663–5668, October 2006.

[28] Van-Duc Nguyen. Constructing stable force-closure grasps. In
Proceedings of 1986 ACM Fall Joint Computer Conference, pages
129–137. IEEE Computer Society Press, 1986.

[29] M. Peshkin and A. Sanderson. Planning robotic manipulation strate-
gies for sliding objects. In IEEE International Conference on Robotics
and Automation, volume 4, pages 696–701. Institute of Electrical and
Electronics Engineers, 1987.

[30] Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Russ
Tedrake. Simultaneous Localization and Grasping as a Belief Space
Control Problem. In International Symposium on Robotics Research,
pages 1–16, 2011.

[31] Urs Ramer. An iterative procedure for the polygonal approximation of
plane curves. Computer Graphics and Image Processing, 1(3):244–
256, November 1972.

[32] Alberto Rodriguez, M.T. Mason, and Steve Ferry. From Caging to
Grasping. In Proceedings of Robotics: Science and Systems, Los
Angeles, CA, USA, 2011.

[33] C. Rosales, L. Ros, J. M. Porta, and R. Suarez. Synthesizing Grasp
Configurations with Specified Contact Regions. The International
Journal of Robotics Research, July 2010.

[34] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic Grasping of Novel
Objects using Vision. The International Journal of Robotics Research,
27(2):157–173, February 2008.

[35] John D Schulman, Ken Goldberg, and Pieter Abbeel. Grasping
and Fixturing as Submodular Coverage Problems. In International
Symposium on Robotics Research, pages 1–12, 2011.

[36] G. Smith, E. Lee, K. Goldberg, K. Bohringer, and J. Craig. Computing
parallel-jaw grips. IEEE International Conference on Robotics and
Automation, 3:1897–1903, 1999.

[37] Chao-Ping Tung and A.C. Kak. Fast construction of force-closure
grasps. IEEE Transactions on Robotics and Automation, 12(4):615–
626, June 1996.

[38] Markus Waibel. RoboEarth: A World Wide Web for Robots.
Automaton Blog, IEEE Spectrum. http://spectrum.ieee.
org/automaton/robotics/artificial-intelligence/
roboearth-a-world-wide-web-for-robots, Feb. 5, 2011.


