
Actuator Networks for Navigating an
Unmonitored Mobile Robot∗

Jeremy Schiff§, Anand Kulkarni†, Danny Bazo§, Vincent Duindam§,
Ron Alterovitz§, Dezhen Song‡, Ken Goldberg§†

§ Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720-1770, USA
† Dept. of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720-1777, USA

‡ Dept. of Computer Science, Texas A&M University, College Station, TX, 77843-3112, USA
{jschiff|anandk|dbazo|vincentd|ronalt|goldberg}@berkeley.edu, dzsong@cs.tamu.edu

Abstract—Building on recent work in sensor-actuator networks
and distributed manipulation, we consider the use of pure actu-
ator networks for localization-free robotic navigation. We show
how an actuator network can be used to guide an unobserved
robot to a desired location in space and introduce an algorithm
to calculate optimal actuation patterns for such a network. Sets
of actuators are sequentially activated to induce a series of static
potential fields that robustly drive the robot from a start to
an end location under movement uncertainty. Our algorithm
constructs a roadmap with probability-weighted edges based on
motion uncertainty models and identifies an actuation pattern
that maximizes the probability of successfully guiding the robot
to its goal.

Simulations of the algorithm show that an actuator network
can robustly guide robots with various uncertainty models
through a two-dimensional space. We experiment with additive
Gaussian Cartesian motion uncertainty models and additive
Gaussian polar models. Motion randomly chosen destinations
within the convex hull of a 10-actuator network succeeds with
with up to 93.4% probability. For n actuators, and m samples
per transition edge in our roadmap, our runtime is O(mn6).

Keywords: Sensor Networks, Actuator Networks, Robotic
Navigation, Potential Fields, Motion Planning

I. INTRODUCTION

As robots become smaller and simpler and are deployed in
increasingly inaccessible environments, we need techniques
for accurately guiding robots in the absence of localization by
external observation. We explore the problem of observation-
and localization-free guidance in the context of actuator
networks, distributed networks of active beacons that impose
guiding forces on an unobserved robot.

In contrast to sensor networks, which passively observe
their environment, actuator networks actively induce a physical
effect that influences the movement of mobile elements within
their environment. Examples include light beacons guiding

*This research is supported in part by NSF CISE Award: Collabo-
rative Observatories for Natural Environments (Goldberg 0535218, Song
0534848), Netherlands Organization for Scientific Research (NWO), NIH
(F32CA124138), by NSF Science and Technology Center: TRUST, Team for
Research in Ubiquitous Secure Technologies, with additional support from
Cisco, HP, IBM, Intel, Microsoft, Symmantec, Telecom Italia and United
Technologies, and by the AFOSR Human Centric Design Environments for
Command and Control Systems: The C2 Wind Tunnel, under the Partnership
for Research Excellence and Transitions (PRET) in Human Systems Interac-
tion.

Fig. 1. An actuator network with sequentially activated actuators triplets
(shown as squares) driving a mobile robot toward an end location. The robot
is guided by creating locally convex potential fields with minima at waypoints
(marked by ×s).

a robot with an omni-directional camera through the dark,
electric fields moving a charged nano-robot through a fluid
within a biological system, and radio transmitters on sensor
motes guiding a robot with a single receiver. We consider a
network of beacons which exert a repellent force on a moving
element. This repellent effect models many systems for which
purely attractive models for beacon-assisted navigation are
not realistic or practical. The repulsive effect of an actuator
network permits the guided element to pass through specific
points in the interior of a region while avoiding contact with
the actuators themselves, unlike traditional attractive models
for beacon-assisted navigation. Due to their simple structure,
actuators can be low-cost, wireless, and in certain applications
low-power.

In this paper, we consider a specific application of actuator
networks: guiding a simple mobile robot with limited sensing
ability, unreliable motion, and no localization capabilities. A
motivating scenario for such a system emerges from the poten-
tial use of low-cost robots in hazardous-waste monitoring and
cleanup applications, such as the interior of a waste processing
machine, nuclear reactor, or linear accelerator. Robots in these
applications must execute cleanup and monitoring operations

in dangerous, contaminated areas where, for safety or practical
reasons, it is impossible to place human observers or cameras,
or to precisely place traditional navigational waypoints. In
this scenario, an actuator network of radio or light beacons
may be semi-randomly scattered throughout the region to aid
in directing the robot from location to location through the
region. By shifting responsibility for navigation to a network
of actuators which directs a passive robot, smaller and more
cost-effective robots may be used in these applications.

We consider the 2D case, where the actuator network con-
sists of beacons at different locations in a planar environment.
The actuator network is managed by control software that
does not know the position of the robot, but it is aware of
the positions of all of the actuators. Such software may be
either external to the system, or distributed across the actuators
themselves, as in the case of a sensor network. We assume
only that the robot’s sensor is able to detect and respond
consistently to the strength and direction of each actuation
signal. Such a general framework accurately represents a
wide variety of real-world systems in use today involving
deployed navigational beacons, while significantly reducing
the technical requirements for both the beacons and the robots.

We present an algorithm that sequentially switches between
sets of actuators to guide a robot through a planar workspace
towards an end location as shown in Figure 1. Using three non-
collinear actuators, each one generating a repellent force field
with intensity falling off inversely proportional to the square
of the distance, we generate potential fields that drive the robot
from any position within the convex hull of the actuators to
a specific position within the interior of the triangle formed
by the actuators (the local minimum of the potential field).
The optimal sequence of potential fields to move the robot
to a specific point within the interior of the workspace is
determined using a roadmap that incorporates the possible
potential fields as well as uncertainty in the transition model of
the robot. Despite this uncertainty and the absence of position
measurement, the locally convex nature of potential fields
ensures that the robot stays on track. We present results from
simulated actuator networks of small numbers of beacons in
which a robot is successfully guided between randomly chosen
locations under varying models of motion uncertainty. With
as few as 10 actuators in a randomly-placed actuator network,
our algorithm is able to steer a robot between two randomly
selected positions with probability 93.4% under motion un-
certainty of 0.2% standard deviation Gaussian Polar motion
uncertainty (perturbing the robot’s magnitude and angle with
additive Gaussian motion uncertainty).

II. RELATED WORK

There is a long history of investigation into the charac-
teristics of potential fields induced by physical phenomena
and how objects are affected by these fields. Some of the
earliest work, related to the study of gravitational, electric and
magnetic fields, as well as topological properties of such fields,
was pioneered by Newton, Gauss, Laplace, Lagrange, Faraday,
and Maxwell [1], [2].

Potential functions for robotic navigation have been studied
extensively as tools for determining a virtual field which a
robotic element can follow to an end location while avoiding
obstacles. See Choset et al. [3] for an in-depth discussion.
Khatib proposed a model where an end location is represented
as an attractor, obstacles are represented as repulsers, and the
overall field is determined by the superposition of these fields
[4], [5]. While these fields are typically referred to as potential
fields, they are actually treated as vector fields that provide the
desired velocity vector for the robot at any location in space.
While moving, the robot performs simple gradient descent on
this space. Motion planning requires defining attractive and
repulsive fields such that the robot will always settle at a local
minimum created at the end location. Several extensions exist
to this classical approach, for example to prevent the robot
from getting stuck at a local minimum [6] and to deal with
moving obstacles [7], [5].

Rimon and Koditschek addressed this problem by determin-
ing the attractive and repulsive potential functions necessary
to guarantee unique minima [8]. They accomplished this by
defining functions over a “sphere world” where the entire
space and all obstacles were restricted to be n-dimensional
spheres. They discovered a mapping from this solution to other
types of worlds such as “star-shaped worlds”, allowing for
a general solution to this problem. Connolly et al. [6] use
harmonic functions in the repulsive and attractive functions to
avoid local minima. In our work, we also address the problem
of local minima, but are restricted in our choice of potential
functions.

Whereas past research has treated modeling a robot’s en-
vironment and guidance instructions as an arbitrary virtual
potential function, our work considers a network of actuators
which emit signals from given, fixed positions and explicitly
models physical phenomena. In our formulation, these actu-
ators are the sole contributors to the potential field, rather
than the environment or guidance information. In addition,
the potential fields in our algorithm transition at discrete time
steps, and problems related to local minima are avoided by
steering the robot through waypoints, rather than directly from
start to end location.

The concept of distributed actuation has been studied in
various contexts. Li et al. [9] examined how to directly apply
potential functions in a distributed fashion over sensor net-
works, focusing on formulating the algorithm in a distributed
manner. Pimenta et al. [10] addressed the robot navigation
problem by defining force vectors at the nodes of a graph.
They assume, however, that nodes can be arbitrarily added to
the graph, contrary to our problem formulation in which the
actuators are provided as input and are fixed. Finally, research
in distributed manipulation has examined how to leverage
many actuators to perform coordinated manipulation, focusing
primarily on the use of vibratory fields to place and orient parts
[11], [12], [13], [14], [15].

To actively construct potential fields to steer a mobile robot
subject to uncertainty in motion and sensing, we build on
previous results in motion planning under uncertainty [16].

Motion planners using grid-based numerical methods and
geometric analysis have been applied to robots with motion
and sensing uncertainty using cost-based objectives and worst-
case analysis [17], [18], [16]. Markov Decision Processes have
been applied to motion planning with uncertainty in motion,
but these methods generally require state sensing and are not
directly applicable to actuator networks [19], [20], [21], [16].

In this paper, we consider a hybrid sensing uncertainty
model: the actuator network cannot sense the mobile robot
but the mobile robot can sense the potential field. Lazanas
and Latombe proposed a landmark-based approach in which
the robot has improved sensing and actuation inside landmark
regions, reducing the complexity of the motion planning
problem to moving between these regions [22]. An actuator
in an actuator network can be viewed as a generalization
of a landmark that can be controlled and can exert influ-
ence over the mobile robot at arbitrary distances. As with
sensing uncertainty, this paper considers a hybrid actuation
uncertainty model: the actuator network generates a precise
potential field with no uncertainty while the mobile robot
is subject to uncertainty in its motion. To address motion
uncertainty, Alterovitz et al. introduced the Stochastic Motion
Roadmap (SMR), a sampling-based method that explicitly
considers models of motion uncertainty to compute actions
that maximize the probability that a robot will reach an end
location [21]. As in SMR, we use the objective of maximizing
probability of success over a roadmap. But unlike SMR, which
assumes perfect sensing, the maximum probability path for an
actuator network must be computed before plan execution is
begun since sensing feedback is not available.

III. PROBLEM FORMULATION

A. Assumptions

We consider the control of a single mobile robot in a
planar environment, influenced by an actuator network. The
n actuators are located at known positions xi ∈ R2. Each
actuator can be controlled independently to produce a signal
with piece-wise constant amplitude ai(t) ≥ 0. Each actuator
generates a radially symmetric potential field Ui of the form

Ui(x) =
ai

|x− xi|
(1)

The direction and magnitude of the gradient of this field can
be observed from any location x ∈ R2 and are given by the
vector field Fi

Fi(x) =
∂Ui

∂x
= −ai(x− xi)

|x− xi|3
(2)

i.e. the signal strength |Fi(x)| is inversely proportional to
the square of the distance to the actuator, as is common for
physical signals.

The aim of the actuator network is to guide a mobile
robot along the direction of steepest descent of the combined
potential field U(x) =

∑
i Ui(x). The position of the robot

as a function of time is denoted by p(t) ∈ R2, and the robot
is assumed to have sufficient local control to be able to move

approximately in a given direction vector v (relative to its own
coordinate frame). The desired motion direction v is equal to
the direction of steepest descent of the combined potential field
U and is hence given by the vector sum

v = −
∑

i

Fi(x) =
∑

i

ai(x− xi)
|x− xi|3

(3)

Under this control strategy, each of the actuators serves
effectively as a “robot repulser”, causing the robot’s direction
of motion to be determined by the total combined force from
all actuators. We only assume that the robot can continu-
ously measure the direction and strength of the superimposed
actuator signals. In particular, no global position sensors or
odometry is required. Its motion is described by a general
model ṗ = R(v), which may include stochastic components
to represent sensor and actuator uncertainty, or general un-
certainty in movement across the workspace due to viscosity
in a fluid environment, uneven terrain causing wheel slip, or
simply unreliability in the robot’s design.

The design of a suitable sensor for the robot to measure
the actuator signals depends on the type of actuation used.
For light-based actuation, one could use an omni-directional
camera. Each actuator signal from a certain direction causes
a specific spot in the image to light up with a brightness
depending on the actuator strength and distance. The desired
motion vector v can then be computed simply by adding the
force directions corresponding to all image pixels, weighted
by their brightness.

A centralized controller is assumed to know the location of
the actuators and to be able to control the actuator amplitudes
in a time-discrete manner. It does not have other sensing infor-
mation; in particular, it cannot measure the robot’s position.

B. Inputs and Output

The inputs of the control algorithm are the initial location
p0 = p(0) ∈ R2, the end location pe ∈ R2 of the robot, and
the locations of each actuator xi ∈ R2. The actuator locations
can either be determined a priori, or via some localization
scheme. The key aspect is that the actuators will not observe
or track the robot.

The proposed algorithm returns a sequence of actuator
amplitudes {ai(tj)} at discrete time instants tj that maximizes
the probability that the robot successfully moves from the start
location p0 to the end location pe. If no path from p0 to
pe can be found, the algorithm returns the empty sequence.
Each set of amplitudes contains exactly three nonzero values
corresponding to a particular triangle of actuators and an
associated start and destination location. The use of only
three actuators at a time has the advantage of simplifying
the analysis of the system and potentially reducing power
consumption of the network by limiting the number of active
actuators at any time. To conserve power, all idle actuators
can go into a low-power state. Each time instance is separated
by a sufficiently large duration that a robot starting at the
associated start location will by this time either have migrated
to the associated target location moving at minimum velocity

or will be outside the actuator triangle and get progressively
farther away. This time is determined by the minimum speed
of the robot.

C. Motion Uncertainty

To investigate the utility of actuator networks in steering
robots with uncertain motion, we considered two uncertainty
models R(v): one using additive random Gaussian noise on the
robot’s Cartesian coordinates, and one using additive random
Gaussian noise on the robot’s polar coordinates. In other
words, the Cartesian motion uncertainty model describes the
uncertain motion of the robot as[

ṗx

ṗy

]
= ṗ = R(v) =

[
N
(
vx, σ

2
)

N
(
vy, σ

2
)] (4)

while the polar motion uncertainty model is given by[
ṗx

ṗy

]
= ṗ = R(v) =

[
r cos(θ)
r sin(θ)

]
(5)

where r and θ are drawn from Gaussian distributions as

r = N
(
|v|, σ2

)
θ = N

(
atan2(vy, vx),

σ2

4π2

)
IV. MOTION CONTROL USING ACTUATOR NETWORKS

To solve the problem of finding a valid actuation sequence
(if one exists), the algorithm first generates all possible

(
n
3

)
triangles that can be formed using the n actuators. Then,
it computes the incenters of these triangles (as discussed in
Section IV-A) to be used as local minima of the potential
fields. These incenters define the vertices in a graph, and the
next step of the algorithm is to determine the weights of all
possible edges between the vertices. We define the weight
of an edge to be the probability that the robot successfully
navigates from one vertex to the other, as defined by the robot
motion model R(v). The resulting graph defines a roadmap
for the robot, and the last step of the algorithm is to insert the
start and end locations into the roadmap and determine the path
between them that maximizes the probability of successfully
reaching the end location.

A. Local control using actuators triplets

The following assumes the actuators we choose are not
collinear. Consider a potential field U generated by an ac-
tuators triplet i, j, and k (and all the other actuators in
the network set to zero amplitude). If the amplitudes of the
actuator triplet is strictly positive, the potential field will have a
local minimum at some point inside the triangle. This location
is called the waypoint of the potential field. In our global
algorithm, we may traverse many waypoints to get from the
start to the end location. The final waypoint is defined to be
the end location. For a given triangle structure, we define
the feasible region as the set of locations that can be made
waypoints, that is, local minima of the potential field. The
feasible region is clearly strictly smaller than the triangle
defined by the active actuators.

For a given waypoint x, C(x) is the capture region of a
waypoint as the set of all points x ∈ R2 such that, when

Fig. 2. Examples of two different triangles and three different waypoints
(denoted as circles) and their capture regions (shaded areas) for both triangles.
The incenter of each triangle is marked with a ’+’.

Fig. 3. Example of a triangle with its incenter.

following the direction of steepest descent from x, one will
eventually arrive at x. Some examples of capture regions for
various triangles and waypoints are given in Figure 2.

For a point x̄ to be a local minimum of the potential field,
the gradient ∂U

∂x at x̄ should be zero, and the Hessian matrix
∂2U
∂x2 should be positive definite. This means that the actuator
amplitudes ai, aj , ak > 0 must be chosen such that

∂U

∂x
(x̄) =

[
xi−x̄
|x̄−xi|3

xj−x̄
|x̄−xj|3

xk−x̄
|x̄−xk|3

]ai

aj

ak

 = 0 (6)

The space of ai satisfying Equation 6 is a one-dimensional
vector space, but since both Equation 6 and the signature of
the Hessian are scale invariant, checking whether x̄ is in the
feasible region reduces to 1) checking whether the elements
of any solution vector ai of Equation 6 have equal sign (all
positive or all negative), and if so 2) checking whether for a
choice of positive ai the Hessian at x̄ is positive definite.

In the global control law described in the following section,
we choose a specific point in each triangle to be the waypoint,
namely the incenter. The incenter of a triangle is the center
of its inscribed circle, or equivalently, the intersection of the
three angle bisectors of the triangle’s vertices (Figure 3).
In extensive simulation of many different triangles shapes,
the incenter was always found to be in the feasible region,
and when chosen as the waypoint, the capture region of the
incenter was found to generally be larger than other centers,
including the centroid. While the incenter has performed well,
other ways of determining waypoints can be considered. A
formal proof of these favorable properties of the incenter is
the subject of future work.

Algorithm 1 The Actuator Network Algorithm
1: triangles ← computeTriangles(actuatorLocations)
2: vertices ← computeIncenterLocations(triangles)
3: graph ← computeEdgeWeights(vertices)
4: path ← computePath(startVertex, endVertex, graph)

B. Global control using switching potential field

To extend the previously described static local control law
from an actuator triplet to a full actuator network, we define a
roadmap that robustly guides the robot from its start location,
via the incenters of successive triangles defined by actuator
triplets in the network, to its end location. The steps in the
algorithm are as follows (Algorithm 1):

1) Compute all
(
n
3

)
triangles that can be generated by the

n actuators in the network.
2) Compute the incenters of the triangles and designate

these incenters as vertices in a graph.
3) For every pair of vertices (v1, v2) in the graph, add a

directed edge from v1 to v2 if v1 is in the capture region
of the potential field with local minimum at v2. Use the
robot motion model R(v) to compute the probability
P (v2|v1) that the robot moves from v1 to v2 in this
potential field. Set the edge weight to be the negative
log of this probability: − logP (v2|v1).

4) The weighted graph forms a roadmap for the robot. Add
the start location and end location to the graph and
run Dijkstra’s algorithm [16] to obtain the optimal path
from start to goal, or, if no such path exists, the empty
sequence.

The resulting shortest path is a sequence {vi} of vertices, or,
with the exception of the start and end location, a sequence
of incenters. We can robustly drive the robot from incenter
to incenter by successively switching the amplitudes such that
the next incenter vi+1 in the path becomes the new waypoint.
Since the point vi is in the capture region of vi+1, the robot
will be driven to the end location. Even though no position
sensing mechanism for the robot is used, and even though the
robot model contains stochastic components, the convergent
nature of the potential fields will ensure that the position
motion uncertainty does not grow unbounded. As long as the
actuators do not move, step 4 can be repeated using the same
roadmap to solve multiple queries for different start and end
locations.

C. Computational Complexity

In step 1 with n actuators, we explore O(n3) triangles. For
step 2, it takes O(1) time to compute an incenter location and
associated actuator amplitudes, thus it takes O(n3) to complete
this step. For step 3 with m rejection samples per edge, there
is an edge for each pair of incenters, thus this step will take
O(mn6). For step 4, there are O(n3) vertices and O(n6)
edges. Because Dijkstra’s algorithm takes O(|E|+|V | log |V |),
step 4 takes O(n6). Thus, the total runtime is O(mn6).

While this result is polynomial in m and n, for certain appli-
cations requiring very fast construction of actuation strategies
for very large actuator networks, it may be desirable to further
reduce this runtime. The most immediate way to reduce the
runtime is to not consider all possible

(
n
3

)
triangles. Instead,

we can modify step 1 in Section IV-B only use triangles of
reasonable size (not too small or too large) or discard triangles
for which the capture region is fully contained in the capture
region of other triangles.

It is also important to note that the computation of the
roadmap is an offline procedure that must be carried out only
once during the preparation of the roadmap for a given actuator
network. In addition, many implementations of an actuator
network may self-correct for an increased number of actuators
by providing additional resources for computation along with
each actuator. The (notably parallel) problem of computing
edge weights could be solved using distributed computation
across the computation elements.

D. Implementation aspects

To compute the motion probabilities for the edge weights
in step 3 of the algorithm, we perform rejection sampling
with m samples. For an edge from v1 to v2, we compute
the robot motion from v1 by integrating the robot velocity
R(v) using Euler integration. If, after a certain integration
interval τ the robot is within some small distance ε of v2,
we consider the motion successful, and failure otherwise.
Thus, each edge’s weight is determined by the percentage of
successful transitions from v1 to v2. Valid values for ε depend
on the specific robot’s size relative to the workspace and
sensitivity to motion uncertainty, while τ depends strictly on
the size of the region and the natural velocity of the robot. For
instance, τ may be defined as the maximum amount of time
required for a robot to move linearly between any two points
in the planar region at its minimum velocity with no motion
uncertainty, and ε may be set to 1% of the minimum distance
between any two actuators. Tighter bounds are possible for
faster movement. Even though v1 may be in the capture region
of v2, sensor and actuator uncertainty (as captured by R(v))
can cause the robot to move temporarily outside the capture
region, after which it will diverge and not succeed in reaching
the current waypoint. The probability of success is determined
by the fraction of the samples that successfully reach the
waypoint.

The weights of the edges are taken to be the negative
logarithm of the probability of success. The probability of
successfully reaching the end location along a certain path is
equal to the product of the probabilities of successfully moving
along the edges of the path. Since multiplying probabilities Pi

is equivalent to adding log-probabilities logPi, maximizing the
probability of success along a path is equivalent to minimizing
the sum of the negative logs of the probabilities along a path.
Thus, we can efficiently compute the path with the maximum
probability by using Dijkstra’s algorithm from p0 to pe using
the negative log of the probability at each edge.

Fig. 4. Simulation result averaging over 100 trials of an actuator network
and 100 start-end location pairs, with n = 5 . . . 10 actuators and two
placement strategies: border placement and interior placement. Results for
each are shown with start and end locations chosen randomly across the entire
workspace or only within the convex hull of the actuators. These simulations
used 0.01 standard deviation polar motion uncertainty.

V. SIMULATION EXPERIMENTS

All simulation experiments were implemented in Matlab
and executed on PCs with a 2.0GHz Intel processor and 2GB
of RAM.

We fixed the workspace to be 5 × 5 units, and used
m = 10 rejection samples. We explored the algorithm’s
effectiveness under a variety of actuator location distributions
(Section V-A) and motion uncertainty models (Section V-B).
For every choice of actuator network and robot uncertainty
model, we randomly chose k = 100 start and end locations in
the workspace, computed the optimal paths using Algorithm 1,
and simulated the motion of the robot in the actuator network.

For a given actuator network topology, we compute the
average probability of the robot successfully traveling from
a random start location to a random end location.

A. Varying Actuator Placement

We randomly placed n ∈ {5, . . . , 10} actuators throughout
the workspace according to two distribution models. In the
bordered distribution strategy, each actuator was placed at
a location chosen uniformly at random on the border of
the workspace. In the interior distribution strategy, actuators
were scattered uniformly at random throughout the entire
workspace. For each actuator placement model and for each
possible number of actuators from 5 to 10, 100 random
actuator geometries were produced. The robot motion model
was set to have zero motion uncertainty and a probabilistic
roadmap was constructed according to the above algorithm.

The results are shown in Figure 4. We examine the two
cases where 1) the start and end locations are within the
convex hull of the actuators and 2) the start and end locations
are anywhere in the workspace. In the first case, the data
suggests that the border selection strategy performs just as
well as the interior selection strategy. Because the convex-hull
eliminates start/end locations that are outside the convex hull

and therefore impossible to reach, we can see that there is
no robustness advantage for one method over another. As the
algorithm performs comparably in the convex-hull restricted
test, the border-selection method is better in the full-workspace
experiment, because on average, its convex hull will cover a
larger area, which in turn means more start/end locations will
be reachable.

As would be expected, increasing the number of actuators
increases the probability of success with the workspace model.
We can see that the probability of success also improves as
we increase actuators for the convex-hull method. We discuss
this property further in Section V-B.

The simulation results suggest lower bounds on the effec-
tiveness of smart actuator placement strategies. Better results
can be obtained by (deterministically) optimizing the place-
ment of actuators to 1) maximize the area of the workspace
that falls into the capture region of at least one triangle, and 2)
maximize the connectivity between points in the workspace,
particularly when likely start and end locations are known
in advance. Such an optimal-placement algorithm will be the
subject of future research.

B. Varying Motion Uncertainty

For networks of n ∈ {5, . . . , 10} actuators, we examined
how the probability of successful completion varied for both
the Cartesian motion uncertainty model described in Equa-
tion 4 and the polar motion uncertainty model described in
Equation 5. We experiment with different errors (standard
deviations σ ∈ {0, 0.01, 0.05, 0.1, 0.2}). The results are sum-
marized in Figure 5, and Figure 6 shows an example of the
roadmap generated by the algorithm.

The figure shows that increasing the motion uncertainty
will result in reduced probability of success, for both motion
uncertainty models and any number of actuators. Under large
motion uncertainty, the robot is more likely to drift outside
the capture region, resulting in failure to reach the next
waypoint and hence to successfully complete the path to the
end location.

Because these examples are only of start/end locations
within the convex hull, adding actuators has two effects. As we
increase the number of actuators, the area of the convex hull
will become larger, which means that the average path length
between start/end goals in the convex hull increases, making
the effects of the motion uncertainty more significant. More
actuators also means more flexibility in the number of paths,
due to an increased number of incenters and overlapping trian-
gles. As we increase the number of actuators, the incremental
addition to the convex hull will decrease, and the number of
additional waypoints will grow quadratically with the number
of new actuators. Thus, for larger motion uncertainty models,
the probability of success first decreases and then increases.
This effect is more extreme depending on how significant the
motion uncertainty is.

For 10 actuators, standard deviations of 0.0, 0.01, 0.05,
0.1, and 0.2, and Cartesian motion uncertainty, the average
probabilities of success are 94.5%, 93.4%, 82.5%, 49.6%, and

(a) Average success rate under Cartesian motion uncertainty.

(b) Average success rate under polar motion uncertainty.

Fig. 5. Comparison of the results of varying Gaussian motion uncertainty for
a fixed set of actuator locations under two motion uncertainty models, with
start and end locations chosen within the convex hull of the actuators.

19.8%. For Polar motion uncertainty, the average probabilities
of success are 93.3%, 91.0%, 49.8%, 32.4%, and 12.2%.

VI. CONCLUSIONS AND FUTURE WORK

We consider the problem of localization-free guidance of a
robot using an actuator network of beacons for use in steering
simple, low-cost robots. The Actuator Networks system and
algorithm steer unmonitored robots between points using an
external network of actuators and a probabilistic roadmap. Our
algorithm was able to produce relatively high probabilities of
successful navigation between randomly-selected points even
in the presence of motion uncertainty.

The low number of actuators necessary for successful
steering in our technique has important consequences for the
robustness of these methods in practice. An inexpensive way to
guarantee continuous operation of an actuator network is to use
more than the minimum number of actuators required for high-
probability performance; as an example, with 20 actuators
under border placement and 1% Cartesian motion uncertainty,
even if half of the actuators eventually fail, the probability of
completion would not drop significantly.

(a) Triangles and corresponding in-
centers (denoted ∗) generated from 8
randomly placed actuators.

(b) Roadmap showing edges between
incenters and an example path (thick
line) through the network.

Fig. 6. Example of a simulation of the actuator-networks algorithm with n =
8 actuators and Cartesian motion uncertainty with σ = 0.01. The actuators
are placed randomly on the border of a square workspace, the incenters of
all possible triangles between them form vertices in a roadmap with edges
containing the probability of successful transition by activation of an actuator
triplet.

We plan to explore several extensions in future work. The
technique of actuator networks can be extended to consider
obstacles in the workspace. An obstacle can affect an Actuator
Network in three ways: (1) the obstacle restricts the motion of
the mobile robot in the workspace, (2) the obstacle blocks the
signal from an actuator, and (3) the obstacle causes multi-path
effects as the signals from the actuators reflect off the obsta-
cles. To model case 1, we can represent obstacles implicitly
in the graph via the edge weights encoding transition success
probabilities. As discussed in Sec. IV-D, we estimate the
probability P (v2|v1) of successfully moving from vertex v1
to vertex v2 by simulating the robot’s motion as it follows the
gradient of the signal generated by the actuators. If the mobile
robot’s motion intersects an obstacle during a simulation, we
determine that a failure has occurred in our rejection sampling
step. For case 2, we can modify the simulation so the gradient
used by the mobile robot does not include signal from a
particular actuator if a line segment between that actuator and
the mobile robot’s current location intersects an obstacle. Since
the probability of success for edges in the graph will decrease
when obstacles are present, the number of actuators necessary
in order to find a feasible plan will increase. Case 3 is known
to be difficult to model effectively, and is a significant problem
for certain domains such as RSSI localization. As future work,
we can also evaluate how different multi-path models will
affect the robot by including this in the determination of the
edge-weights in a similar fashion as case 2.

We would also like to explore the alternative problem of
designing an algorithm for placement of actuators.

VII. ACKNOWLEDGMENTS

We thank the members of the UC Berkeley Automation
Sciences Lab for their feedback and support, including partic-
ularly helpful contributions from Ephrat Bitton, Jijie Xu, and
Menasheh Fogel. We also thank Claire Tomlin, and Shankar
Sastry for their support.

REFERENCES

[1] O. D. Kellogg, “Foundations of potential theory,” 1969.
[2] J. C. Maxwell, “On hills and dales,” The Philosophical Magazine,

vol. 40, no. 269, pp. 421–427, 1870.
[3] H. Choset, K. M. Lynch, S. Hutchingson, G. Kantor, W. Burgand, L. E.

Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations, 1st ed. MIT Press, 2005.

[4] O. Khatib, “Commande dynamique dans l’espace opérationnel des
robots manipulateurs en présence d’obstacles,” Ph.D. dissertation, École
Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse,
France, 1980.

[5] ——, “Real-time obstacle avoidance for manipulators and mobile
robots,” The International Journal of Robotics Research, vol. 5, no. 1,
pp. 90–98, 1986.

[6] C. Connolly, J. Burns, and R. Weiss, “Path planning using Laplace’s
equation,” in Proceedings of the IEEE International Conference on
Robotics and Automation, May 1990, pp. 2102–2106.

[7] W. S. Newman and N. Hogan, “High speed robot control and obstacle
avoidance using dynamic potential functions,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 1987, pp.
14–24.

[8] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Trans. Robotics and Automation, vol. 8, no. 5,
pp. 501–518, 1992.

[9] Q. Li, M. D. Rosa, and D. Rus, “Distributed algorithms for guiding
navigation across a sensor network,” in MobiCom ’03: Proceedings
of the 9th annual international conference on Mobile computing and
networking. New York, NY, USA: ACM Press, 2003, pp. 313–325.

[10] L. C. A. Pimenta, G. A. S. Pereira, and R. C. Mesquita, “Fully
continuous vector fields for mobile robot navigation on sequences of
discrete triangular regions,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2007, pp. 1992–1997.

[11] K. F. Böhringer and H. Choset, Distributed Manipulation, 1st ed.
Kluwer Academic Publishers, 2000.

[12] K.-F. Bhringer, V. Bhatt, B. R. Donald, and K. Goldberg, “Algorithms
for sensorless manipulation using a vibrating surface,” Algorithmica,
vol. 26, no. 3, pp. 389–429, April 2000.

[13] A. Sudsang and L. Kavraki, “A geometric approach to designing a
programmable force field with a unique stable equilibrium for parts
in the plane,” in Proceedings of the IEEE Interational Conference on
Robotics and Automation, vol. 2, 2001, pp. 1079–1085.

[14] F. Lamiraux and L. E. Kavraki, “Positioning of symmetric and non-
symmetric parts using radial and constant fields: Computation of all
equilibrium configurations,” International Journal of Robotics Research,
vol. 20, no. 8, pp. 635–659, 2001.

[15] T. H. Vose, P. Umbanhowar, and K. M. Lynch, “Vibration-induced
frictional force fields on a rigid plate,” in Proceedings of the IEEE
International Conference on Robotics and Automation, April 2007, pp.
660–667.

[16] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[17] B. Bouilly, T. Siméon, and R. Alami, “A numerical technique for
planning motion strategies of a mobile robot in presence of uncertainty,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 2, Nagoya, Japan, May 1995, pp. 1327–1332.

[18] S. M. LaValle and S. A. Hutchinson, “An objective-based framework for
motion planning under sensing and control uncertainties,” International
Journal of Robotics Research, vol. 17, no. 1, pp. 19–42, Jan. 1998.

[19] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson, “Planning under
time constraints in stochastic domains,” Artificial Intelligence, vol. 76,
no. 1-2, pp. 35–74, Jul. 1995.

[20] D. Ferguson and A. Stentz, “Focussed dynamic programming: Extensive
comparative results,” Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-04-13, Mar. 2004.

[21] R. Alterovitz, T. Siméon, and K. Goldberg, “The Stochastic Motion
Roadmap: A sampling framework for planning with Markov motion
uncertainty,” in Robotics: Science and Systems, 2007.

[22] A. Lazanas and J. Latombe, “Motion planning with uncertainty: A
landmark approach,” Artificial Intelligence, vol. 76, no. 1-2, pp. 285–
317, 1995.

