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Abstract— To address privacy concerns with digital video
surveillance cameras, we propose a practical, real-time ap-
proach that preserves the ability to observe actions while
obscuring individual identities. In our proposed Respectful
Cameras system, people who wish to remain anonymous agree
to wear colored markers such as a hat or vest. The system
automatically tracks these markers using statistical learning
and classification to infer the location and size of each face
and then inserts elliptical overlays. Our objective is to obscure
the face of each individual wearing a marker, while mini-
mizing the overlay area in order to maximize the remaining
observable region of the scene. Our approach incorporates
a visual color-tracker based on a 9 dimensional color-space
by using a Probabilistic AdaBoost classifier with axis-aligned
hyperplanes as weak-learners. We then use Particle Filtering
to incorporate interframe temporal information. We present
experiments illustrating the performance of our system in both
indoor and outdoor settings, where occlusions, multiple crossing
targets, and lighting changes occur. Results suggest that the
Respectful Camera system can reduce false negative rates to
acceptable levels (under 2%).

I. INTRODUCTION

The increasing prevalence and ever-improving capabilities
of digital surveillance cameras introduce new concerns for
visual privacy of individuals in public places. Advances in
camera technologies allow for the remote observation of
individuals beyond the mere recording of presence in an
observed area without the individual’s knowledge; instead,
it changes the nature of vision itself. Robotic cameras can
be servoed to observe high resolution images over a wide
field of view. For example, the Panasonic KX-HCM280
pan-tilt-zoom camera costs under $750 with a built-in web-
server and a 21x optical zoom (500 Mpixels per steradian).
Surveillance technologies are additionally empowered by
digital recording, allowing footage to be stored indefinitely,
or processed and combined with additional data sources
to identify and track individuals across time and physical
spaces. Such cameras are also quickly becoming affordable
for commercial use, causing faster proliferation. Their ap-
plications extend beyond security, to industrial applications
such as traffic monitoring and research applications such
as observing public behavior. Their increased observational
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Fig. 1. Sample image frame input on left image, with output regions
overlayed on right image. In this sample, the construction workers wearing
green vests as markers are made anonymous, while faces of the other
construction workers remain visible.

power enables data gathering about individuals far beyond
the capabilities of perceptible human observers, and poses
new challenges to individuals’ sense of privacy in public.

McCahill et al. estimated approximately 4 million cameras
deployed in the UK [1]. The U.S. has also deployed a number
of camera systems in cities such as New York and Chicago
for public monitoring [2], [3], [4]. Deployments of such
large-scale government-run security systems, in conjunction
with numerous smaller-scale private applications, raise fun-
damental privacy concerns that must be addressed. In this
paper we consider the problem of automatically obscuring
faces to assist in visual privacy enforcement. Our objective
is to develop “Respectful Cameras.”

We investigate a new approach for visual privacy that uses
markers worn by individuals to simplify the level of robust
person detection required for obscuring individual identity,
providing a method for individuals to conceivably opt-out
of observation. We would like the false negative rate (where
we fail to obscure the face of an individual who wishes for
privacy) to be under 2%. Existing face tracking methods
have difficulty tracking faces in real-time under moving
backgrounds, changing lighting conditions, partial occlusions
and across facial orientations. These markers provide a visual
cue for our system by having a color that is distinct from the
background. We use the location of the marker to infer the
location of the faces of individuals who wish to “opt-out” of
observation.

Our approach provides some level of visual privacy by
hiding an individual’s identity by obscuring their face with
a colored ellipse, while allowing observation of his or her
actions in full detail. The Respectful Cameras system allows
human actions to be observable so that people can monitor
what is going on (ie, at a construction site or airport terminal)
for security or public relations purposes.



We envision such a system being made widely available, as
these markers would be cheap, unobtrusive, and easily mass-
produced. For example, we could provide inexpensive hats of
a particular color or pattern at the border of the space where
cameras are present, similar to the respectful hats or leg-
coverings that are made available at the entrance of churches
and synagogues.

Our approach learns a visual marker’s color-model with
AdaBoost, uses the model to detect a marker in a single
image, and finally, applies Particle Filtering to integrate tem-
poral information. Recent advances in computer processing
have made our algorithms utilizing AdaBoost and Particle
Filtering feasible for real-time vision applications.

II. RELATED WORK

Protecting privacy of individuals has become increasingly
important as cameras become more ubiquitous and have
greater capabilities, particularly resolution and zoom. The
National Science Foundation (NSF) sponsored TRUST [5],
a research center for security and privacy, and privacy has
been the subject of recent symposia such as Unblinking [6].

Changes in surveillance ubiquity and capabilities raise
questions about the fair balance of police power (the inherent
authority of a government to impose restrictions on private
rights for the sake of public welfare, order, and security)
to monitor public places versus the citizens’ freedom to
pass through public spaces without fear of government
monitoring. According to Gavison, a loss of privacy occurs
through visual surveillance by the extent we are known by
others and subject to their attention [7]. He discusses our
expectation that our actions are observable only by those we
see around us, and thus we can judge how we should act.
Nissenbaum describes how the high-resolution and zooming
capabilities of cameras applied to visual surveillance also
violate the contextual expectations of how people will be
perceived in public [8]. This places the burden upon an
individual to conduct himself or herself as if every move
could be recorded and archived. Finally, it should be noted
that it is not just surveillance that threatens privacy, but also
the ability to be identified [9].

In order to provide automated privacy, the ability to find
the faces or full bodies of people is necessary. Applicable
methods include face detection [10], [11], [12], face tracking
[13], [14], people detection [15], and people tracking [16],
[17]. Unfortunately, these methods have difficulty detecting
and tracking in real-time while being robust enough to ad-
dress privacy under partial occlusions, and changing lighting
conditions. Alternatively, motion detection methods such as
Gaussian Mixture Models [18] can be applied, however they
require time to learn a background model, during which, they
cannot distinguish moving objects from the background.

Approaches to object detection employ statistical classifi-
cation methods including AdaBoost [11], Neural Networks
[19], and Support Vector Machines [20]. Rather than using
the person as the feature, we track a visual marker worn
by the individual, and use a form of AdaBoost [21] to
track the color of that feature. AdaBoost is a supervised

learning approach that creates a strong statistical classifier
from labeled data and a set of of weak hypotheses, which
poorly classify the labeled data. Rather than conventional
AdaBoost that provides a binary label, we use Probabilistic
AdaBoost [22], [23], which provides the probability of an
input’s label, and we use it in our Particle Filter formulation.

When using AdaBoost for detecting objects, either pixel-
based, or region-based features can be used. Pixel-based
approaches, such as in our approach, use a set of features for
each pixel in the image, while region-based usees features
defined over a group of pixels. For region-based, typical
approaches examined applying Haar wavelet features to pixel
regions [11], [24]. Avidan describes the use of a pixel-based
method [25] where each pixel’s initial feature vector contains
the RGB values, as well as two histograms of oriented
gradients similar to those used in Scale Invariant Feature
Transform (SIFT) features [26]. These SIFT features are
commonly used for problems such as the correspondence
between images. Rather than incorporating gradient infor-
mation, our pixel-based approach uses multiple color-spaces
as our feature vector.

Sharing our motivations of robust detection, the Aug-
mented Reality community also simplifies object detection
with visual markers for tracking and calibrating. Zhang et
al. compared many of these methods [27]. Kohtake et al.
applied visual markers to simplify object classification to
ease the User Interaction problem of taking data stored in
one digital device and moving it to another by pointing and
selecting physical objects via an “infostick” [28].

Tracking can be used with object detection to enhance
robustness. One common method of tracking, Particle Fil-
tering, is used to probabilistically estimate the state of a
system, in our case, the location of a visual marker, via
indirect observations, such as a set of video images. Particle
Filtering provides a probabilistic framework for integrating
information from the past into the current estimation. Particle
Filtering is non-parametric, representing the distributions via
a set of samples, as opposed to parametric approaches that
represent distributions with a small set of parameters. For
instance, Kalman Filtering [29], represents distributions by
a mean and a variance. We choose Particle Filtering because
our observation model is non-gaussian, and thus methods
like Kalman Filtering will perform poorly.

Perhaps closest to our approach, both Okuma et al. [30]
and Lei et al. [23] also use a probabilistic AdaBoost for-
mulation with Particle Filtering [23]. However, both assume
a classifier per tracked-object (region-based), rather than
classifier per-pixel. As our markers use pixel-based color, we
don’t need to classify at multiple scales, and we can explicitly
model shape to help with robustness to partial obstructions.
Okuma’s group applies their approach of dynamic weighting
between a Particle Filter and an AdaBoost Object Detector
to tracking hockey players. Rather than weighting, our ap-
proach directly integrates AdaBoost into the Particle Filter’s
observation model. Lei et al. uses a similar approach to us
and performs face and car tracking. However, unlike Lei, our
formulation can track multiple objects simultaneously.



III. SYSTEM INPUT

Our input is the sequence of images from a video stream.
Let i be the frame number in this sequence. Each image
consists of an pixel-array where each pixel has a red, green,
and blue (RGB) component. Our system relies on a visual
marker worn by an individual who wishes to have his or her
face obscured.

IV. ASSUMPTIONS

We use the visual marker’s locations as a proxy for the
location of the human head. Thus, we assume that the face’s
location will always be at a relative offset from the marker.
Similarly, we assume the face’s size will be a scaled size of
the visual marker.

If a person’s face is unobscured for a single frame, the
person’s identity will be known for many subsequent frames.
While false positives make it impossible to see portions of
the scene which the user may wish to observe, it does not
reduce the privacy of those being viewed. Thus, we assume
that false negatives are far less acceptable than false positives.

Our system makes a the following additional assumptions:
• Whenever a person’s face is visible, then the visual

marker worn by that person is visible
• All visible markers have a minimum number of visible,

adjacent pixels
• There is a range of possible ratios between the height

and width of a visible marker’s bounding box
• The marker color is distinguishable from the back-

ground

V. SYSTEM OUTPUT

Our objective is to cover the face of each individual
wearing a marker, while minimizing the overlay area to allow
observation of actions in the scene.

For each frame in the input stream, the system outputs a
set of axis-aligned elliptical regions. These regions should
completely cover all faces of people in the input image who
are wearing markers. An elliptical region for the ith output
image is defined by a center-point, denoted by an x and y
position, an x-axis aligned radius rx and a y-axis aligned
radius ry:

Ei = {(x, y, rx, ry)}

The ith output video frame is the same as the ith input frame
with the corresponding regions Ei obscured via a colored
ellipse.

VI. THREE PHASES OF SYSTEM

Our solution consists of three phases: (A) learning a color-
model for the marker with AdaBoost, (B) identifying the
marker in a single image, and (C) using Particle Filtering to
integrate temporal information for improved performance.

A. Offline Training of the Marker Classifier

We train a classifier offline, which we then use in the
two run-time phases. For classification, we use the statistical
classifier, AdaBoost, which performs supervised learning on
labeled data.

1) Input: A human “supervisor” provides the AdaBoost
algorithm with two sets of samples, one for pixels colors
corresponding to the marker T+ and one for pixels colors
corresponding to the background T−. Each element of the
set has a red value r, a green value g, a blue value b and
the number of samples with that color m. Thus, the set of
colors of marker pixels is

T+ = {(r, g, b, m)}

and the sample set of pixels that correspond background
colors

T− = {(r, g, b, m)}

As we are using a color-based method, the represen-
tative frames must expose the system across all possible
illuminations. This includes maximum illumination, minimal
illumination, and any potential hue effects caused by lighting
phenomena such as a sunset. We discuss the AdaBoost
formulation in more detail in Section VII-A.

2) Output: We use a Probabilistic AdaBoost formulation
that produces a strong-classifier H ′ : {0, . . . , 255}3 7→ [0, 1].
This classifier predicts the probability that the RGB color of
any pixel corresponds to the marker.

B. Run-Time Static Marker Detector

For static detection, each frame is processed indepen-
dently.

1) Input: The Marker Detector uses as input the model
generated from the AdaBoost classifier, as well as a single
frame from the video stream.

2) Output: We can use the marker detector without track-
ing, to determine the location of faces. This would produce
for the ith image, a region Ei as defined in Section V to
obscure each face. A bounded-rectangle on the ith image is
defined by a center-point, denoted by an x and y position, a
width ∆x and a height ∆y:

Ri = {(x, y,∆x,∆y)}

This rectangle is restricted by the assumptions described in
Section IV. When used as a component of a marker tracker,
the detector supplies the same set of rectangles for initializing
the tracker, but also determines for each pixel, the probability
that that pixel corresponds to the visual marker. We define
P (Ii(u, v)) to be the probability that pixel (u, v) corresponds
to a marker in image Ii.

C. Run-Time Dynamic Marker Tracker

The dynamic marker tracker uses temporal information to
improve the Run-time Detector.

1) Input: The dynamic marker tracker uses both the
classifier determined in the training phase and output from
the static image recognition phase. We processes a frame
per iteration of our Particle Filter. Let the time between the
previous frame and the ith frame be ti ∈ R+, and the ith
image be Ii. We discuss Particle Filtering in more depth in
Section IX-A, but it requires three models as input: a prior
distribution, a transition model, and an observation model.



We use the image detection system to initialize a Particle
Filter for each newly-detected marker and the the probabil-
ities P (Ii(u, v)) to determine the posterior distribution of a
hat location for each Particle Filter, given all previously seen
images.

2) Output: The output for the ith frame is also the region
Ri as defined in Section V.

VII. OFFLINE TRAINING OF THE MARKER CLASSIFIER

To train the system, a human “supervisor” left-clicks on
pixels in a sample video to add them to the set T+, and
similarly right-clicks to add pixels to set T−.

In this phase, we use the two sets T+ and T− to generate
a strong classifier H ′, which assigns the probability that any
pixel’s color corresponds to the marker. Learning algorithms
generalize from far less data than is needed to determine
the probabilities that each color corresponds to the visual
marker explicitly. In our experiences, AdaBoost performs
well using a thousand labeled samples, while getting 10
samples for each color to generate the probability explicitly
would require 10× 2563 ≈ 170 million samples.

A. Review of AdaBoost

AdaBoost uses a set of labeled data to learn a classifier.
This classifier will predict a label for any new data. AdaBoost
constructs a strong classifier from a set of weak-hypotheses.

Let X be a feature space, Y ∈ {−1, 1} be an observation
space and G = {h : X → Y } be a set of weak hypotheses.
AdaBoost’s objective is to determine a function H : X 7→ Y
by learning a linear function of elements from G that predicts
Y given X . AdaBoost is an iterative algorithm where at each
step, it integrates a new weak-hypothesis into the current
strong-classifier.

Let η(x) = P (Y = 1|X = x) and define AdaBoost’s
loss function φ(x) = e−x. The objective of AdaBoost is to
minimize the expected loss or

E(φ(yf(x))) = inf
f

[η(x)φ(f(x)) + (1− η(x))φ(−f(x))]

This is an approximation to the optimal Bayes Risk, mini-
mizing E[l(f(X), Y )] with loss function

l(Ŷ , Y ) =
{

1 if Ŷ 6= Y
0 otherwise

To determine this function, we use a set of training data
{(xi, yi)|xi ∈ X, yi ∈ Y } sampled from the underlying dis-
tribution.

In general, AdaBoost can use any weak-hypothesis with
error less than 50%. However we use the greedy heuristic
where at each iteration, we select a weak hypotheses that
minimizes the number of incorrectly labeled data points [11].

1) Recasting Adaboost to Estimate Probabilities: Typ-
ically, as described in [31], AdaBoost predicts the most
likely label that an input will have. If we let β(x) =∑T

t=1 αtht(X), then the typical strong classifier is binary
and defined to be H(x) = sign (β(x)). Friedman et. al
describes how to modify the AdaBoost algorithm to produce
a probability instead [22]. The strong classifier determines

that probability that an input corresponds to a label of 1 (as
opposed to -1) is

H ′(x) =
e2β(x)

1 + e2β(x)

B. Determining Marker Pixels

We begin by applying Gaussian blur with standard de-
viation σI to the image, which enhances robustness to
noise by integrating information from nearby pixels. We
use these blurred pixels for T+ and T−. We then project
our 3 dimensional RGB color space into the two additional
color spaces, Hue, Saturation, Value (HSV) [32] and LAB
[33] color-spaces. HSV performs well over varying lighting
conditions because Value changes over varied lighting inten-
sities, while Hue and Saturation do not. LAB is designed
to model how humans see color, being more perceptually
linear, and is particularly well suited for determining spec-
ularities. This projection of RGB from T+ and T− into the
nine-dimensional RGBHSVLAB color space is the input to
AdaBoost.

For weak hypotheses, we use axis-aligned hyperplanes
which bisect each of the 9 dimensions. These hyperplanes
also have a direction, where all 9-dimensional tuples that
are in the direction and above the hyperplane are labeled
as visual marker pixels, and all other tuples are non-marker
pixels. The hyperplane bisecting dimension d at a threshold
j is described by:

hd,j(X) =
{

1 if X[d] ≥ j
−1 otherwise

Our set of weak hypotheses also include the complement of
these hyperplanes hd,j(X) = −hd,j(X). By projecting the
initial RGB space into the additional HSV and LAB spaces,
we provide more classification flexibility as we have more
weak classifiers. For the weak learner, AdaBoost chooses
the dimension and threshold at each round that minimizes
the remaining error. The algorithm terminates after running
for some constant number, n, iterations.

VIII. RUN-TIME STATIC MARKER DETECTOR

This section describes a marker detection algorithm, using
only the current frame. Once we have the strong classifier
from AdaBoost, we apply the following steps: (1) Apply the
same gaussian blur to the RGB image as we did for training
(2) Cluster marker pixels using the connected component
method. (3) Select all clusters that satisfy certain constraints
to be locations of markers.

A. Clustering of pixels

To determine the pixels to marker correspondence, we
apply the connected-component technique [34]. We iterate
through all pixels that have been classified as markers, and
assign the cluster for that pixel (as defined by connected-
component) with a unique group-id. This yields a set of
marker pixels for each visual marker in the frame.



To remove false positives, we verify there are at least c
pixels in the cluster, and that ratio of width (∆x) to height
(∆y) falls within a specified range from a to b: Formally

a ≤ ∆x

∆y
≤ b

IX. RUN-TIME DYNAMIC MARKER TRACKER

We use Particle Filtering to incorporate temporal informa-
tion into our models improving robustness to partial occlu-
sions. As Particle Filtering requires probability distributions
for how likely the state is given indirect observations, we
describe a pixel-based Probabilistic AdaBoost formulation,
which can be adapted for such purposes.

A. Review of SIR Particle Filtering

While there are many versions of Particle Filters, we
use the Sampling Importance Resampling (SIR) Filter as
described in [35], [36]. It is a non-parametric method for
performing state estimation of Dynamic Bayes Nets (DBNs)
over discrete time. The state at iteration i is represented
as a random variable χi with instantiation χi and the
evidence of the hidden state Ei with instantiation ei. There
are three distributions needed for SIR Particle Filtering: the
prior probability distribution of the object’s state P (χ0), the
transition model P (χi|χi−1), and the observation model
P (Ei|χi). The prior describes the initial distribution of the
object’s state. The transition model describes the distribution
of the object’s state at the next iteration, given the current
object state. Lastly, the observation model describes the
distribution of observations resulting from a specific object’s
state. Particle Filtering uses a vector of samples of the
state or “particles” that are distributed proportionally to the
likelihood of all previous observations P (χi|E0:i). At each
iteration, each particle is advanced according to a transition
model, and then assigned a probability according to its
likelihood using the observation model. After all particles
have a new likelihood, they are resampled with replacement
using the relative probabilities determined via the observation
model. This results in a distribution of new particles which
have integrated all previous observations and are distributed
according to their likelihood. The more samples that are
within a specific state, the more likely that state is the actual
state of the indirectly observed object.

B. Marker Tracking

Particle Filtering uses three models: a prior distribution,
transition model, and observation model.

1) Marker Model: The state of a marker is defined with
respect to the image plane and is represented by an axis-
aligned bounding box and a velocity. This results in a 6 tuple
of the bounding box’s center x and y positions, the height
and width of the bounding box, orientation, and speed. As
can be seen in Figure 2 this yields:

χ = (x, y, ∆x, ∆y, θ, s)

We model the marker in image coordinates, rather than world
coordinates to improve the speed of our algorithms.

Fig. 2. Illustrates the state of a single bounding box (left) and the
probability mask used for the Particle Filter’s observation model (right).

2) Transition Model: The transition model describes the
likelihood of the marker being in a new state, given its state
at the previous iteration, or P (χi|χi−1 = χi−1). Our model
adds gaussian noise to the speed, orientation, bounding-box
width, and bounding box height and determines the new
x and y position via Euler integration. Let W ∼ N(0, 1)
be a sample from a gaussian with mean zero and standard
deviation of one. The mean µ and standard deviation σ for
each portion of our model are set a priori. Formally:

xi = xi−1 + si · cos(θi) · ti
yi = yi−1 + si · sin(θi) · ti
∆xi = ∆xi−1 +

√
ti · (σ∆x ·W + µ∆x)

∆yi = ∆yi−1 +
√

ti · (σ∆y ·W + µ∆y)
si = si−1 + σs ·

√
ti ·W

θi = θi−1 + σθ ·
√

ti ·W

At each iteration, we also enforce that the width and height
constraints for each particle described in Section VIII-A. The
sample from the gaussian (after being scaled by µ and σ)
must be rescaled according to

√
ti in order to compensate

for changing frame rates.
3) Observation Model: The observation model describes

the distribution of the marker’s state given an image, but
our formulation gives a probability per pixel, rather than per
marker state. We use an objective function as a proxy for
the observation model, which has a probability of 1 if the
bounding box tightly bounds a rectangular region of pixels
with high probability. Let bounding box R1 be the marker’s
state and bounding box R2 have the same midpoint as R1

but have size
√

2∆x×
√

2∆y. The
√

2 scaling factor makes
the areas of R1 and R2 be equal. Then:

R1 =
{

(u, v)
∣∣∣∣ x− ∆x

2 ≤ u ≤ x + ∆x
2 ,

y − ∆y
2 ≤ v ≤ y + ∆y

2

}

R2 =

(u, v)

∣∣∣∣∣∣∣
x− ∆x

2 ≤ u√
2
≤ x + ∆x

2 ,

y − ∆y
2 ≤ v√

2
≤ y + ∆y

2 ,

(u, v) /∈ R1


P1(χi = χi|Ii) = 1

∆x∆y

(∑
(u,v)∈R1

P (Ii(u, v))
)

P2(χi = χi|Ii) = 1
2∆x∆y

( ∑
(u,v)∈R1

P (Ii(u, v))+∑
(u,v)∈R2

1− P (Ii(u, v))

)



Our final metric used as our observation model is:

P (χ|Et = et) = (1− P1)P1 + P1P2

This metric has the essential property that there is an optimal
size for the bounding box, as opposed to many other metrics
which quickly degenerate into determining the marker region
to consist of all the pixels in the image or just a single pixel.
For intuition, assume the projection of the visual marker
produces a rectangular region. If a particle’s bounding region
is too large, its objective function will be lowered in region
R1, while if it is too small, then the objective function would
be lowered in region R2. This function yields a probability of
1 for a tight bounding box around a rectangular projection
of the marker, yields the probability of 0 for a bounding
box with no pixels inside that correspond to the marker,
and gracefully interpolates in between (according to the
confidence in R1). We illustrate the two areas in Figure 2.

4) Multiple-Object Filtering: Our formulation uses one
Particle Filter per tracked marker. To use multiple filters,
we must address the problems of: (1) markers appearing,
(2) markers disappearing and (3) multiple filters tracking the
same marker. We make no assumptions about where markers
can be obstructed in the scene.

For markers appearing, we use the output of the Marker
Detection algorithm to determine potential regions of new
markers. We use an intersection over minimum (IOM) met-
ric, also known as the Dice Measure [37], defined for two
regions R1 and R2 is:

IOM(R1, R2) =
Area(R1 ∩R2)

min(Area(R1), Area(R2))

If a Marker Detection algorithm has an IOM of more than a
specified overlap γ with any of Particle Filter’s most likely
location, then a Particle Filter is already tracking this marker.
If no such filter exists, we create a new marker at this region’s
location by creating a new Particle Filter with the location
and size of the detection region. We choose an orientation
uniformly at random from 0 to 2 π, and choose speed from
0 to the maximum speed that is chosen a priori.

To handle disappearing markers, we require that the at
least one particle for a filter exceeds γ1, otherwise the filter
is no longer confident about the marker’s location, and is
deleted.

Multiple Particle Filters can become entangled and both
track the same marker. If the IOM between two Particle
Filters’ exceeds the same threshold as appearing filters γ2, we
remove the filter that was created most recently. We remove
the most recent to maximize the duration a Particle Filter
tracks it’s marker.

X. EXPERIMENTS

We ran two sets of experiments to evaluate performance.
We experimented in our lab where we could control light-
ing conditions and we could explicitly setup pathological
examples. We then monitor performance on video from a
construction site as we vary model parameters. All tests in-
volved video from a Panasonic KX-HCM280 robotic camera,

Fig. 3. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates where the intense light
induced a specularity, causing the classifier to lose track of the hat.

transmitting an mJPEG stream of 640x480 images. We ran
all experiments on a Pentium(R) CPU 3.4 GHZ.

Currently, the system has not been optimized, and we
could easily extend our formulation to incorporate paral-
lelism. The rate that we can process frames is about 3
frames per second, which is approximately 2x slower than
the incoming frame rate.

For both setups, we trained on 2 one-minute video se-
quences using the method described in Section VI-A, ex-
posing the system to many potential backgrounds, location
and orientations of the visual markers, and over all lighting
conditions that the experimental data experiences.

Wed define an image to have a false negative if any
part of any face is visible and has a false positive if there
is a obscuring region that touches no face. These metrics
are independent of the number of people in the scene. To
evaluate the system, we place each frame into the category
of correctly obscuring all faces, being a false negative but not
false positive, being a false negative but no a false positive,
and being both a false negative and false positive. For the
tables, let FN denote false negatives and FP denote false
positives.

A. Lab Scenario Experiments

Within the lab, where we can control for lighting changes,
we explore scenarios that challenge our system. Our marker
is a yellow construction hat, and we assume the face is at
the bottom-center of the bounding box and the same size as
the hat. We evaluate how the system performs when 1) there
are lighting conditions that the system never was trained on,
and 2) two individuals (and their respective markers) cross.
Lab experiments were run on 51 seconds of data acquired
at 10 frames per second (fps). We summarize our results in
the following table:

Lab Scenario Experiments
Experiment # Frames Correct FPs FNs FP+FNs
Lighting 255 96.5% 0.0% 3.5% 0.0%
Crossing 453 96.9% 0.0% 3.1% 0.0%

1) Lighting: In this setup, there is a single person, who
walks past a flashlight aimed at the hat during two different
lighting conditions. We experiment with all lights being
on, and half of the lab lights on. In the brighter situation,



Fig. 4. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates tracking during a crossing,
showing how the Particle Filter grows to accommodate both hats.

Fig. 5. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates tracking after a crossing
(one frame after Figure 4), showing how the system successfully creates a
second filter to best model the current scene.

the flashlight does not cause the system to lose track of
the hat. However, in the less bright situation, the hat gets
washed out with a specularity and we fail to detect the hat
during this lighting problem. We show one of the failing
frames in Figure 3. In general, the system performs well at
interpolating between observed lighting conditions, but fails
if the lighting is dramatically brighter or darker than the
range of lighting conditions observed during training.

2) Crossing: In this test, two people cross paths multiple
times, at different speeds. Figure 4 shows how the system
merges the two hats into a single-classified hat when they
are connected, while still covering both faces. We are able
to accomplish this via the the biasses in our transition model,
µ∆x and µ∆y , which reduces false-negatives when multiple
faces are in a scene. At the following frame in Figure 5, the
system successfully segments what it believed to be a single
hat in the previous frame into two two hats by creating a
new Particle Filter.

B. Construction Site Experiments

The construction site data was collected from footage
recorded at the CITRIS construction site at the University
of Berkeley, California, under Human Subjects Protocol
#2006-7-1. For the construction site, our marker is a green
construction vest and we assume the face is located at the
top-center of the vest, as we show in Figure 1. We first
evaluate the performance of the system as we use different
color-spaces used for input to AdaBoost. We then evaluate
the differences in performance between the Particle Filtered
approach and the Static Marker Detector. All experiments
were run on data acquired at 6 fps. This diminished speed

(the max is 10 fps) was caused by requiring us to view the
video stream to move the camera to follow a person during
recording, while having the system store a secondary video
stream to disk for later experimentation. We summarize our
results over a 76 second (331 frame) video sequence from a
typical day at the construction site in the following table:

Construction Site Experiments
Experiment % Correct FPs FNs FP+FNs
Only RGB 19.4% 68.6% 5.1% 6.9%
Only HSV 86.1% 11.5% 1.2% 1.2%
Only LAB 84.3% 10.9% 3.6% 1.2%
All 9 (RGB+HSV+LAB) 93.4% 5.4% 0.6% 0.6%
Static Marker Detector 82.8% 16.3% 0.0% 0.9%
Dynamic Marker Tracker 93.4% 5.4% 0.6% 0.6%

1) Color Models: In this test, we investigate how our
system performs by using different color spaces, specifically
because we are only using simple axis-aligned hyperplanes
as our weak hypotheses. We compare the algorithm’s perfor-
mance when just using RGB, just HSV, just LAB, and then
the “All 9” dimensional color space of RGB+HSV+LAB. We
determined all 9 is superior in both false positive and false
negative rates.

2) Particle Filtered Data: In this test, we evaluated per-
formance between a non-Particle Filtered approach, where
we just use each frame independently, and using Particle
Filtering. We can see that the system dramatically reduces
the number of false-positives, while inducing slightly more
false-negatives. There were two extra false-negatives induced
by the Particle Filter, one from the shirt being cropped at
the bottom of the scene, and one where the previous frame
experienced extreme motion blur. We were very strict with
our definitions of false-negatives as the face’s visible region
due to the partially cropped shirt is only 8 pixels wide.

XI. CONCLUSION AND FUTURE WORK

We have presented the Respectful Cameras visual privacy
system which tracks visual markers to robustly infer the loca-
tion of individuals wishing to remain anonymous. We present
a static-image classifier which determines a marker’s location
using pixel colors and an AdaBoost statistical classifier.
We then extended this to marker tracking, using a Particle
Filter which uses a Probabilistic AdaBoost algorithm and
a marker model which incorporates velocity and interframe
information.

In future work, we will experiment with different markers
to identify preferred colors or patterns. It may be possible
to build a Respectful Cameras method directly into the the
camera (akin to the V-chip) so that faces are encrypted at the
hardware level and can be decrypted only if a search warrant
is obtained.

To obtain our experimental data, videos, or
to get updates about this project, please visit:
http://www.cs.berkeley.edu/∼jschiff/RespectfulCameras.
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Fig. 6. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates how without Particle
Filtering, partial occlusions segment the visual marker, resulting in multiple
small ellipses.

Fig. 7. Sample image frame input on left image, with output regions
overlayed on right image. This sample illustrates how Particle Filtering
overcomes partial occlusions, yielding a single, large ellipse.

relating this work to policy and law. Panasonic Inc. donated
the cameras for our experiments.
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