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1 Abstract 
A simple gripper with two vertical cylindrical jaws can 
make contact with external or internal concavities in 
polygonal and polyhedral parts to align and grip parts 
in form closure. Such grippers are inexpensive, 
lightweight, and their small footprint facilitates access 
and insertion for industrial applications. 

 We refer to this as a v-grip. We begin by defining 
2D v-grips, where a pair of frictionless point jaws 
makes contact with a pair of polygonal part concavities 
to achieve form-closure. We define a v-grip quality 
metric based on the maximum possible change in the 
part’s orientation when jaw position is relaxed 
infinitesimally. For a polygonal part with polygonal 
holes, we give an algorithm for computing and ranking 
2D v-grips. We also extend the definition to jaws with 
non-zero radii. In 3D, v-grips are achieved with a pair 
of frictionless vertical cylinders. We define 3D v-grips 
and give a numerical algorithm for computing all 3D v-
grips of a polyhedral part. 

If n is the number of vertices that describe the   part 
and k is the number of concave vertices, we can 
compute all 2D v-grips in O(n+k2) time. Computing 
offsets for jaws with non-zero radii takes O(n log n) 
time. A ranked list of 2D v-grips based on the quality 
metric can be computed in an additional O(k2 log k) 
time. We find all 3D v-grips in O(n3 k2) time.  A Java 
implementation of the 2D v-grip algorithm is available 
online for testing.   

2 Introduction 
As illustrated in figure 1, parts can be gripped with two 
cylindrical jaws by contracting or expanding the jaws 
toward a pair of concavities. One frictionless contact at 
a concave vertex can generate forces equivalent to two 
contacts at part edges. In this paper, we formalize 
conditions for, and study the properties of v-grips for 
rigid polygonal parts with jaws of zero radii. A v-grip is 
contracting if the jaws move towards each other and 
expanding if the jaws move away from each other. We 
analyze v-grips using a distance function. We define a 
new quality metric based on the maximum possible 
change in the part’s orientation when jaw position is 
relaxed infinitesimally This can be computed efficiently 
to rank v-grips and is consistent in most cases with 
physical intuition. 

We then consider v-grips in 3D where a given 
polyhedral part rests on a horizontal planar work-
surface under the influence of gravity. 

(a) Contracting v-grip (b) Expanding v-grip  

(c) Initial 3D part orientation (d) Final 3D v-grip 
 

Figure 1: Examples of v-grips in 2D and 3D. 

3 Related Work 
Bicchi and Kumar [2] and Mason [11] summarize 
research in robot grasping. Grasps can be classified as 
force or form-closure. Form-closure occurs when any 
neighboring configuration of the part results in collision 
with an obstacle. Force-closure occurs if any external 
wrench can be resisted by applying suitable forces at the 
contacts [11,21]. 

Gripper contacts have been modeled as frictional 
points, frictionless points or soft contacts [24]. [19] and 
[26] prove that 4 and 7 frictionless point contacts are 
necessary to establish form closure in the plane and in 
3D respectively. [12] and [10] proved that 4 and 7 point 
contacts suffice. These lower bounds assume that 
contacts occur at smooth boundaries of the part where a 
unique normal is well defined. 

Van der Stappen et al [29] give an efficient 
algorithm to compute all Nguyen regions: sets of 
placements of four frictionless point contacts on a 
polygonal part that ensure form-closure. Given a set of 
four edges, they show how to compute critical contact 
placements in constant time. The time complexity of 
their algorithm is bounded by the number of such sets, 
O(n4) in the worst case. A jaw in contact with a vertex is 
considered as two jaws in contact with the neighboring 
edges. 

Rimon and Burdick [21] and [22] were the first to 
identify and introduce the notion of second order force 
closure. First order immobility occurs if every direction 
of motion in C-space has a negative component along 
some outward normal to a C-obstacle in contact with the 
part. For second order mobility, every trajectory 
approximated up to its second order derivative in the 
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Taylor expansion results in a decrease in distance from 
some C-obstacle in contact with the part. [20] shows 
that generic planar parts can be immobilized (second-
order) with three frictionless contacts if they are placed 
with infinite precision. Ponce et al [17] give an 
algorithm to compute such configurations. [20] also 
gives a sufficient condition for immobility using two 
fingers when contacting jaws have the necessary 
curvature. Their analysis is for a smooth body with a 
unique normal at the point of contact. 

For force-closure grasps with friction, Faverjon and 
Ponce [6] compute grasps for curved parts using 2 
parallel cylindrical jaws. Chen and Burdick [5] use two 
point contacts to grip parts at antipodal points. Mirtich 
and Canny [13] study how 2D and 3D parts can be 
grasped by 2 and 3 fingers respectively. They compute 
optimal force-closure grasps with frictional contacts, 
optimality being measured in terms of the ratio of 
magnitudes of contact forces to external wrenches. Tung 
and Kak [28] give an algorithm to generate two point 
frictional force-closure grasps at edges of polygonal 
parts. [25] show how such grasps can be optimized to 
resist slip about the part’s center of mass when it is 
lifted. 

Park and Starr [14] consider force-closure grasps of 
a polygonal part created using a 3-fingered robot hand 
by considering combinations of edges and vertices. At 
convex vertices, they use specially shaped fingers to 
grasp the part. [18] computes grasps for polygons using 
3 fingers with friction. 

Lynch [9] formalizes conditions for toppling 
objects considering contact friction, location, and 
motion. Zhang and Goldberg [30] give a numeric 
algorithm to design jaws for aligning parts in the 
vertical plane. They use trapezoidal jaw modules that 
maximize contact between the jaws and the part by 
combining analysis of toppling, jamming, liftoff, 
accessibility and form-closure. 

Berretty et al [1] describe a method to orient parts 
by pulling with one cylindrical jaw that generalizes the 
algorithm described in [7]. The stable positions when 
pulling with the jaw occur only when the jaw is in a 
concavity. 

Sugar and Kumar [27] give an excellent review of 
grasp quality metrics and propose frame-invariant 
quality metrics based on the grasp stiffness matrix. We 
define a kinematic metric based on sensitivity of the 
part’s orientation when the jaws’ position is 
infinitesimally relaxed. 

Rimon and Blake [23] give a method to find caging 
grasps, configurations of jaws that constrain parts in a 
bounded region of C-space such that actuating the 
gripper results in a unique final configuration. They 
consider the opening parameter of the jaws as a function 
of their positions and use stratified Morse theory to find 
caging grasps. They state without proof that equilibrium 

grasps occur only at extrema of the opening parameter 
of the gripper. 

In 1996, Plut and Bone [15] and [16] proposed 
inside-out and outside-in grips using two or more 
frictionless point contacts at linear or curved part edges. 
They gave an algorithm for finding such grips where the 
distance between contacts is at an extremum. We extend 
and refine their results for 2 point grips, showing that 
the extremum is a necessary but not sufficient condition 
for expanding and contracting v-grips. We then give an 
efficient algorithm for computing them.  

4. Problem Definition 
We begin by defining v-grips in the plane. Given a 
planar projection of the part, we want to find and rank 
all available v-grips. We assume that the projection of 
the part onto the horizontal plane is rigid and can be 
defined by a polygonal boundary and polygonal holes. 
All contacts are frictionless. We initially assume both 
jaws have zero radius. 

Let va and vb be two concave vertices. The 
unordered pair <va, vb> is an expanding or contracting 
v-grip if jaws placed at these vertices will provide 
frictionless form-closure of the part. 

Input: Vertices of polygons representing part 
boundary and holes, in counter-clockwise order, and 
jaw radius. 

Output: A list (possibly empty) of all v-grips sorted 
by quality measure. 

5. Test for form-closure 
The key to our algorithm is a constant-time test for 
form-closure. We consider a pair of concave vertices 
<va, vb>. Let vx-1 and vx+1 be the vertices adjacent to vx. 
Let ux-1 be the unit vector from vx to vx-1, and ux+1 the 
unit vector from vx to vx+1. Let uxy be the unit vector 
from vx to vy. 

We construct normals at va, to both edges bordering 
va. This splits the plane into 4 regions (see figure 2). We 
number these I to IV. We do a similar construction with 
vb. 

Theorem 1: <va, vb> is an expanding v-grip if and only 
if va lies strictly in region I of vertex vb, and vb lies 
strictly in region I of vertex va. 

Theorem 2: <va, vb> is a contracting v-grip if and only 
if either: 

(1) va lies in region IV of vertex vb, and vb lies in region 
IV of vertex va, at least one of them strictly,  

or  

(2) ux.uy = -1 and ux.uab = uy.uab = 0 for at least one set 
of values of (x, y) = (a±1, b±1), and the jaws approach 
from outside the region between the parallel lines (see 
figure 3). 
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Figure 2: Two normals at a concave vertex partition the 

plane into 4 regions that define v-grips. 
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Figure 3: Example where the second condition in 

Theorem 2 holds. 

5.1. Proof of Theorem 1 
Let P represent part perimeter parameterized by 

arclength s. Let sa and sb represent the positions of the 
jaws on P. Following [3] and [23], we express the 
distance between the jaws as σ: +→× RPP , a 
function of (sa, sb). The σ(sa, sb) surface is positive 
except when it touches the plane along the diagonal 
sa=sb (where it is 0), as these points represent coincident 
jaws. The sa-sb plane can be partitioned into rectangles 
whose sides are equal in length to the sides of the 
polygon. In each of these regions, the distance function 
is defined by a quadratic expression. 

To prove Theorem 1, we prove that the following 4 
statements are equivalent: 
A: va and vb are concave and they each lie in the 
other’s region I. 
B:  σ(sa, vb) is a strict local maximum at sa=va, and 
σ(va, sb) is a strict local maximum at sb=vb. 
C: σ(sa,sb) is a strict local maximum at sa=va and sb=vb. 
D: <va, vb> is an expanding v-grip for the part. 

B⇔A: This is clearly seen since the shortest 
distance from a point to a line is along the normal to the 
line (figure 4). 

va-1 va 

jb 

(a) 

va-1 va 

jb 

(b)  
Figure 4: jbva is a strict local maximum (a) or a local 

minimum (b) for sa in va-1va. 

C⇒B follows from the definitions. 
B⇒C: Assume B. Since B⇔A, A is true. 

Therefore, vb lies strictly in region I of va. Hence, there 

exists a small region, say a circle of radius ε (a small 
length) around vb, which also lies completely in region I 
(figure 5). 

ε 

va 

vb 

 
Figure 5: σ(va,sb) is a local maximum of σ(sa,sb) for any 

sb in the neighborhood of vb. 

Consider any v’a in P, within ε from va, and v’b in P 
within ε from vb. Since va is in vb’s region I, σ(va, sb) is 
a local maximum at sb=vb. Therefore, vavb > vav’b. Since 
v’b also lies in va’s region I, vav’b > v’av’b. Thus, vavb > 
v’av’b. 

Therefore, C⇔B. 
C⇒D: Assume C is true and D is false. Since 

A⇔C, A is true. Since σ(va, vb) is a local maximum and 
D is false, the part is not in form-closure. This means 
that there exists a neighboring point in C-space that 
does not result in collision. In other words, the part can 
be displaced infinitesimally. Since C is true, at least one 
jaw must break contact with the part in the new 
configuration. 

If both jaws break contact, we can move the part 
along the directions ±uab till contact occurs as both 
vertices are concave and hence have an angle of less 
than 180o from the direction of the jaws’ approach. As a 
result, movement in at least one of two opposite 
directions results in contact. From this position, we can 
slide the part along the contact edge moving the vertex 
towards the jaw, till contact occurs with the other jaw or 
till the vertex is at the jaw. Since vavb is a strict 
maximum, the vertex has to be reached. 

However, since A is true, uab is at acute angles to 
ua-1 and ua+1, and uba is at acute angles to ub-1 and ub+1. 
Therefore, when the vertex reaches the jaw, the other 
jaw would collide with the interior of the part: thus the 
part cannot move and is in form-closure. 

 

v a 
v b 

radius:  v a v b 
 

Figure 6: The edges are at acute angles to vavb. 

D⇒C: Assume D is true and C is false. Then, σ(va, 
vb) is not a local maximum. Either it is a strict local 
minimum or it is not a strict local extremum. If vavb is a 
strict local minimum it can be shown that <va, vb> is a 
contracting v-grip, and hence D cannot be true. If vavb is 
not a strict extremum, then by the continuity of s, the 
part can move along the contour {(s1, s2) | σ(s1, s2) = 
σ(va, vb)}. This contradicts D. Therefore C is true. 



  

 

Thus, D⇔C, completing the proof for theorem 1. 
We can prove Theorem 2 similarly. The second 
condition in Theorem 2 arises due to the limiting case 
where vertex lies on the boundary of region IV. 

6. Quality Metric 
We can compare v-grips based on how much the part 
can rotate when the jaws are relaxed infinitesimally. We 
define a measure of the sensitivity of the grip to such 
infinitesimal disturbances. 

Given a v-grip <va, vb>, let l = σ(va, vb). If the 
distance between the jaws changes by ∆l, let ∆θ  be the 
maximum angle the part can rotate. Clearly, ∆θ depends 
on ∆l. We consider the ratio ∆θ/∆l, which for 
infinitesimal changes becomes dθ/dl. We rank parts 
based on |dθ/dl|: smaller ratios correspond to more 
robust grips. It can be shown that the maximum |dθ| 
occurs when both jaws are in contact with the part with 
one of them at a vertex. 

To derive an expression for |dθ/dl|, we consider one 
edge at an angle φ to vavb. Using the sine rule, 

(l-∆l)/(sin φ) = l / (sin(φ + ∆θ)) 
If we neglect second order terms, this simplifies to: 

|dθ/dl| = l
l

∆∆
→∆

/lim
0

θ = |tan(φ)/l| 

 

∆θ 
l 

l-∆l 

φ 
v a v b 

 
Figure 7: Deriving an expression for |dθ/dl|. 

For all 4 edges, we choose the one with φ closest to 90o, 
which yields the maximum possible change in 
orientation. For this value of φ, the metric will be 
|tan(φ)/l|. We use this metric to rank v-grips. 

7. Algorithm Implementation and Examples 
Recall that the polygonal part is described by n vertices. 
For the polygonal part, we find k ≤ n concave vertices 
flanked by straight edges in O(n) time. We then 
consider each pair of concave vertices, checking the 
conditions in Theorems 1 and 2 in constant time. The 
result is a set of up to k2 v-grips. Thus, all v-grips are 
found in O(n + k2) time. Computing the quality metric 
takes constant time for each v-grip and sorting requires 
O(k2 log k) time as there are at most k2 v-grips. 

We implemented the algorithm in Visual BASIC. 
On a Pentium II 266 MHz PC running on Windows NT 
4.0, the program execution time was under 0.02 seconds 
for a part with 30 vertices and 10 concave vertices, 
while interpreting. A Java implementation is available 
for online testing at http://alpha.ieor.berkeley.edu/vgrip. 

Figure 8 shows a few pairs of vertices checked for 
being v-grips. Grips (a), (c) and (e) are v-grips, while 
(b) and (d) are not. Grip (d) is a case where the distance 
function is at a saddle point. Figure 9 shows a buckle 
and a glue-gun with two example grips each. 

 

(c)  v-grip (b) Not v-grip 

(d) Not v-grip (e)  v-grip 

(a)  v-grip 

 
Figure 8: Examples of some pairs of vertices checked 

for being v-grips. 

 

(a) (b)  

 

(c) (d)  
Figure 9: Example parts (buckle and glue gun) whose 

v-grips were found and ranked. The v-grip (a) is ranked 
better than (b) by the quality metric for the buckle. The 

v-grip (c) is ranked better than (d). 

8. Jaws with Non-Zero Radii 
If a jaw has a radius r, the part can be transformed by a 
Minkowsky addition, offsetting the polygons with a disk 
of radius r. As a result, points that were at a distance 
less than r from the original part lie on the interior of the 
transformed part. Thus, the transformed part’s interior 
gives the positions of the jaw’s center that result in a 
collision. 

The transformed part with jaws of zero radii is an 
equivalent problem, as the lines of action do not change 
for any of the forces. (This transformation is also of 
interest in CAD/CAM for finding machine tool paths.) 
For a polygon (possibly with holes) described by n 
vertices, Held [8] gives a rigorous O(n2) algorithm that 
computes the Voronoi diagram and the resulting 
generalized polygons. Faster algorithms that run in O(n 
log n) exist in theory. From this output, we identify k 
accessible concave vertices on the original part. These 



  

 

vertices cannot be determined without the transforming 
the part, as the transformation changes part topology. 

The transformed part is described by generalized 
polygons (edges can be either line segments or circular 
arcs), and can have a different topology from the 
original part. To avoid contact with convex vertices, we 
ignore the circular edges. An additional condition to 
check for v-grips with jaws of non-zero radii is that the 
jaws should not intersect. 

9. V-grips for 3D Parts 
In 3D, we assume the part sits on a planar work-

surface under the influence of gravity. 3D v-grips are 
achieved with a pair of frictionless vertical cylinders 
closing monotonically and quasi-statically as shown in 
figures 10 and 1(c) and (d). In this section, we describe 
a numerical algorithm for computing all 3D v-grips for 
contracting v-grips of polyhedral parts where the jaws 
have zero radius and show how it can be applied to find 
critical shape parameters. 

We are given a 3D polyhedral part model with the 
part’s center of mass. The 3D algorithm repeatedly 
applies the 2D algorithm to projections of the 3D part. 
We define a candidate 2D v-grip as a 2D v-grip of the 
projection of the 3D part on the work-surface. Initially, 
when the part rests stably on the work-surface, the part’s 
center of mass stays at a local minimum. Hence, the part 
does not rotate out of the plane until the distance 
function reaches a local minimum corresponding to a 
candidate 2D v-grip for that orientation. 

We define a candidate 3D v-grip as a configuration 
of the part and the jaws such that the only feasible 
motion of the part is pure translation in a vertical 
direction along the jaws: gravity and the work-surface 
uniquely determine the part’s configuration. We define 
a 3D v-grip as a candidate 3D v-grip that results from a 
deterministic sequence of candidate 2D v-grips as the 
part is gripped. 

First, we compute all stable orientations of the part 
on a flat horizontal work-surface by computing its 
convex hull and check all faces for stability based on the 
part’s center of mass. For each stable orientation, we 
compute the planar projection of the part on the work-
surface. For each projection, we compute all candidate 
2D v-grips. For each of these, we compute the part’s 
trajectory as we incrementally reduce the distance 
between the jaws. For each increment, we determine the 
local minimum of the center of mass’ height near the 
previous configuration. In our algorithm, since  the part 
rotates out of the plane only after a candidate 2D v-grip 
is achieved, the minimum height of the center of mass 
occurs only at candidate 2D v-grips. Hence, finding this 
minimum is reduced to a one-dimensional search over 
possible candidate 2D v-grips. 

For any configuration in the part’s trajectory, let ni 
be wrenches caused by unit forces along the contact 

normals at each contact between the part and the jaw 
and let Nj be those at each contact between the part and 
the work-surface, all normals into the part. Let Wh be 
the subspace of the wrench space consisting of all 
wrenches caused by horizontal forces. Let Wg be the 
wrench caused by gravity. For each configuration in the 
trajectory, we check if one of the following conditions 
hold: 

(1) A 3D v-grip is achieved if the origin of Wh is 
contained inside the convex hull of ni. 

(2) A 3D equilibrium grip is achieved if the origin 
of Wh is on the boundary of the convex hull of ni. Note 
that this is not a 3D v-grip. 

(3) The part falls away if Wg is not contained in the 
conical hull of ni and Nj. 

If none of the three conditions are met, we find the 
next point in the part’s trajectory by moving the jaws 
together incrementally and repeating the above. 

If the part has n vertices, and if k is the maximum 
number of concave vertices over all projections of the 
part on the work-surface, the number of candidate 2D v-
grips is O(nk2). Each iteration in the algorithm requires 
O(n2) time. Thus, all 3D v-grips can be found in O(n3 k2) 
time. The following examples illustrate the algorithm. 

9.1  3D Example 1 
Consider a contracting v-grip of the gear and shaft 

shown in figure 10. The cylindrical symmetry of the 
part reduces a degree of freedom making the results 
easier to visualize. The gear is a cylinder of radius R and 
thickness t. The shaft has a radius r, and has lengths l1 
and l2 on either side of the gear. Initially, the part rests 
on the horizontal plane, as shown in figure 10(a) with 
the side of length l1 touching the work-surface. 

 
(a) 3D part rotates into alignment. 

 
(b)  Projection onto worksurface. 

Figure 10: v-grip of a gear and shaft. 

We describe the part’s orientation by θ, the angle 
between the axis and the horizontal plane, and φ, the 
angle between the horizontal projection of the shaft and 
the line joining the jaws. Let w be the distance between 
the jaws. From the horizontal projection, it is clear that 
the only possible candidates for 2D v-grips are as shown 
in figure 10(b), and its mirror image. 



  

 

Using theorem 2, we can compute the critical part 
dimensions for which there exists a 3D v-grip starting 
from this initial orientation as: 

θtan2 22 rRt −<  

This is necessary and sufficient for first order 
immobility of the projection. As during gripping θ only 
decreases, it is enough to check this for the initial θ in 
the resting position. 

Given θ, we can find w and φ from the horizontal 
projection. Hence, from w, we can uniquely determine θ 
and φ. Thus for a given w, the set of candidate 
orientations for points on the part’s trajectory reduces to 
a singleton set making the minimization redundant. 
Termination occurs in the final orientation shown in 
figure 10(a) when a 3D v-grip occurs. 
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Figure 11: Orientation of the part as the jaws close. The 
parameters are: R=10, r=2, l1=12, l2=25, t=10. Jaw 

velocities are equal and opposite. In (b), the path of the 
shaft is traced as the grip aligns the part. 

9.2  3D Example 2 
As second example: consider the 3D part without 

axial symmetry shown in Figures 12 and 1(c) and (d). 
This part has a number of stable orientations when in 
contact with a planar work-surface under the influence 
of gravity. We study the gripping process starting with 
the stable part configuration shown in Figure 1(c) and 
show that the part will be aligned as the jaws are closed 
so that its largest planar surface is rotated to become 
parallel and aligned with the horizontal work-surface. 

We analyze the part with a frame of reference 
whose origin is fixed at part vertex O. An orientation of 
the part is given by rotating the part from the orientation 
in figure 12(a) about the x-axis by θ, then about the y-

axis by φ, and finally about the z-axis by ϕ. If we 
analyze the gripping in terms of the distance between 
the jaws and ignore the actual positions of the jaws, we 
can ignore the value of ϕ. 

 
 

(a) Orthogonal top view   (b) Orthogonal right view 
 

Figure 12: Example 2: 3D Part without axial symmetry 
shown in figure 1(c) and 1(d). 

Let the other two rotations be defined the 
transformation matrix T(θ, φ). The conditions to prevent 
collision are: [{T(θ, φ�) (v1c – v2c) . ex}

2 + {T(θ, φ�) (v1c – 
v2c) . ey}

2]0.5 = w, where w is the distance between the 
jaws, and v1c and v2c are the 2D concave vertices where 
the jaws make contact. To model part motion, we must 
locally minimize the height of the center of mass given 
by max [T(θ, φ�) ( g – vi) . ez], where g is the center of 
mass’ position, over all vertices vi of the polyhedron. 

The result of the analysis of the v-grip is shown as a 
graph of |θ| and |φ| vs. w in Figure 13. Initially both θ 
and φ decrease until θ becomes zero. Then, θ stays 
constant while φ decreases to zero. Thus, the gripping 
process results in a 3D v-grip and aligns the part to the 
orientation where its largest planar surface becomes 
parallel and aligned with the horizontal work-surface. 
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Figure 13: Orientation of part in figure 12 during the 
gripping process. 

10. Discussion and Future Work 
V-grips are an example of minimalist or RISC 

robotics as described in [4]. Parallel-jaw grippers are 
inexpensive, lightweight, and their small footprint 
facilitates access for industrial applications. Algorithms 
that automatically compute grip configurations can be 
particularly useful during the design stage, when small 
changes in part geometry can greatly facilitate part 
handling during assembly and manufacture. 



  

 

In this paper we define v-grips and a new quality 
metric for ranking them based on sensitivity to 
infinitesimal disturbances. This metric can be computed 
quickly and is consistent with intuition. It can be of 
particular use in the design stage to ensure that high 
accuracy is easily attained during manufacturing. For a 
polygonal part with polygonal holes, we give a fast 
algorithm for computing and ranking all v-grips, 
characterize its complexity, and report on an 
implemented version. We extend the definition to jaws 
with non-zero radii. We define 3D v-grips with a pair of 
frictionless vertical cylinders, give a numerical 
algorithm for computing all 3D v-grips, and illustrate 
with examples. 

In future work, we will explore alternatives to the 
quality metric in Section 6, which takes into 
consideration only the local shape around the jaws. An 
alternative metric may be based on a measure of the 
"capture region": the volume of C-space that is 
guaranteed to converge to the desired grip. We will also 
extend the definition of v-grips to curved parts and more 
general jaw shapes. We are also developing a model of 
part deformation resulting from v-grips. 
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