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Abstract— We consider the use of wireless sensor networks to
automatically track “perceptive pallets” of materials in ware-
houses for the purpose of monitoring volumetric and spatial
constraints. A combination of radio frequency and ultrasound
chirping produces position estimates that are noisy and prone
to error. To address this, we measure and characterize the
ultrasound response from standard “Cricket” wireless sensor
motes and beacons. We develop a non-parametric particle
filtering approach to estimate trajectories of moving motes and
introduce two asymmetric observation models that incorporate
measured cardioid-shaped response patterns of ultrasound. We
use simulation to study the effects of mote placement: position
error as a function of ceiling height and beacon density, and
then perform physical experiments to evaluate the effectiveness
of asymmetric vs. symmetric observation models for pallet
tracking. Experiments suggest that asymmetric observation
models can improve position estimates by as much as 11%.

I. INTRODUCTION

Effectively managing materials stored in warehouses is
a multi-billion dollar global challenge. Known database
methods monitor entry and exit of materials, but do not
monitor locations of materials. Often, materials are subject
to regulatory requirements in terms of volumetric and spatial
constraints. For example, US regulations for biopharma pro-
duction require more than 1000 gallons of liquid corrosive
(acid) material cannot be stored in one warehouse, and that
an acid cannot be stored within 20 feet of a base and a
flammable material cannot be stored within 20 feet of an
oxidizer. Maintaining these constraints during transit and
storage is a major challenge.

We consider the use of wireless sensor networks to
automatically track “perceptive pallets” of materials in a
warehouse to monitor such constraints. The system is re-
quired to operate dynamically in real-time, so that whenever
a constraint violation is detected, the system can sound
an alarm. We use simulation to study the effects of mote
placement: position error as a function of ceiling height and
beacon density. We then perform experiments to characterize
the effectiveness of asymmetric observation models.
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Fig. 1. Measured ultrasound response patterns overlaid with best fit
asymmetric (cardioid) response models. Rectangle and arrow depict the
orientation of the ultrasonic microphone. Measured position errors are
asymmetric and increase with angular distance from the positive x-axis.

Wireless sensor technologies for localization combine ul-
trasound bursts (chirps) with radio, infrared, or laser beams
and compare time of flight to estimate distances. Currently
off-the-shelf commercially available motes include Cricket
[1][2], Mica2 [3], and Telos [4]. However, the distance
measurements produced by these motes are noisy due to
hardware limitations and environmental effects.

In our initial study [5], we evaluated the ranging capability
of the Cricket Mote, and discovered that the accuracy of
the sensors greatly depends on relative angle between the
transmitting microphone and listening ultrasonic sensor. The
experimental results of that study are illustrated in Fig. 1. In
this paper, we use the measured sensitivity pattern to develop
new statistical observation models and show that they reduce
spatial uncertainty in position estimates. Experiments suggest
that asymmetric observation models can improve position
estimates by as much as 11%.

II. RELATED WORK

A. Monitoring of Spatial Constraints for Warehouse Man-
agement

Research of warehouse management has mostly focused
on optimal deployment and efficient retrieval [6] according
to the principles of supply chain management. One of the



promising technologies is Radio-Frequency Identification
(RFID), which has been introduced to inventory management
and storage tracking [7]. Paper [8] discusses the possibility
of using RFID tags to improve the localization of mobile
robots, where the robot carries two overhead RFID antennas
to get distance readings relative to pre-deployed RFID tags
and then estimates its location from maps of the environment.
An operational RFID system consists of smart-chip tags
embedded with product information coupled with RFID
readers. The system must be centrally operated with state-
of-the-art technologies.

A similar constraint-based distance estimation method
has been proposed in [9], where a spatial distance graph
is constructed by labeling nodes with distance constraints.
Distance intervals were derived by performing a modified
Floyd-Warshall shortest path iteration algorithm for all edges.
This could be a promising approach for distance violation
in warehouse management, since it does not involve a
complicated localization algorithm. However, perfect ranging
results were assumed to implement the method, and each
node must have enough memory to store the global graph
and distance constraints information.

B. Localization Techniques in Wireless Sensor Networks

Localization techniques for WSNs have been extensively
studied in recent years; some excellent reviews may be found
in [10][11]. The most commonly used sensing approaches
are acoustic, radio frequency, and laser beam. The ranging
approaches are based on time of arrival (TOA), angle of ar-
rival (AOA) [12], time difference of arrival (TDOA) [1], and
received signal strength (RSS) [13]. Noisy measurements are
inevitable due to the hardware constraints and environmental
effects. Therefore, signal estimation techniques are proposed
to infer true states from multiple sensor measurements. For
instance, in [12] a sensor node localizes itself by collecting
data from three or more beacon nodes.

For the particular application of spatial constraints mon-
itoring, an inexpensive and scalable solution is required.
AOA typically needs special antenna configuration and is
vulnerable to multi-path reflections. RSS measurements are
simple and inexpensive, but they cannot meet the dynamic
resolution requirements of warehouse monitoring. Along this
path, there have been some recent developments on the
Mica2 mote using phase offsets of radio frequencies in [14].
Estimation error is very small (∼4cm on average), but has a
drawback of long convergence times (about 80 minutes) that
would prohibit dynamically moving nodes. After comparing
these methods, we focus on the TDOA based Cricket motes
and evaluate their performance.

C. Pros and Cons of Cricket Motes

The Cricket location system [15] developed at MIT utilizes
two types of signals, radio and ultrasound, and infers distance
using the time difference of arrival of these two signals. The
Cricket system implements compensation for the effects of
temperature on the speed of sound, interference avoidance
for arrival of radio signal and ultrasonic signals received

from different transmitters, communication scheduling to
avoid collision, and Kalman filtering for discarding incorrect
distance samples.

In the Cricket localization algorithm, trilateration is uti-
lized to derive the position of sensor nodes in [15], where
a robust quadrilateral is introduced as a clique to avoid flip
ambiguities. Additionally, signal processing in static envi-
ronments using a least-square-error trilateration algorithm is
used to infer position from multiple sensor readings. For
a mobile environment, Kalman filters were used to derive
the location. However, the selective directional sensitivity
patterns of ultrasonic sensor motes make the measurements
too biased, so that trilateration may be inconsistent if some
of the distance readings are too noisy. Although the effects
on accuracy caused by distance and angle were observed
in [15], along with the existence of a cardioid sensitivity
pattern, the authors did not explicitly compensate for these
observations.

The most commonly recognized type of sensitivity beam
patterns seen in ultrasonic sensors has one main lobe and
several side lobes [16][17]. For the purposes of this paper,
we abstract the sensitivity pattern to a cardioid shape without
side lobes. In [18] an observation model that accounts for
the sensitivity pattern of ultrasonic receivers is presented.
The model incorporates angle and distance measurements;
however, the sensitivity pattern does not account for received
signal behind the microphone, as observed in a cardioid
sensitivity pattern.

We extend the previous research on localization using
Cricket motes by explicitly modeling the effect of the direc-
tional sensitivity pattern of ultrasonic sensors and making use
of a probabilistic localization algorithm to derive consistent
positions from noisy distance measurements.

D. Probabilistic Localization

Localization within a Bayesian probabilistic framework
has found widespread applications in robotics [19], and
has been shown to have good performance. Moreover, in
some recent studies [20][21][22][10][23], methods based on
a probabilistic framework have been introduced to localize
within a sensor network. Probabilistic inference is made by
observing multiple sets of noisy evidence. It has been shown
in [11], that mobile seeds can be exploited to improve the
accuracy of localization, by using Sequential Monte Carlo
localization method.

Kalman filtering (KF) and Extended Kalman filtering
(EKF) have been shown to be effective tools in the con-
text of localization. However, Kalman filtering is known to
be optimal only when both the transition and observation
models are linear Gaussian distributions. This makes Kalman
filtering infeasible for pallet monitoring, since there exist
non-Gaussian components in the measurement due to the
ultrasonic sensitivity pattern as illustrated in Section I. As
opposed to Kalman and Extended Kalman filtering, particle
filtering explicitly approximates a probability distribution
as a sample set. The advantage of particle filtering is its



capability to represent an arbitrary probability model and its
flexibility in dealing with dynamic and distributed systems.

Particle filtering is an implementation of Bayesian filtering
based on a Sequential Monte Carlo (SMC) method [24]. The
features of the method are a probabilistic transition model
between each state and a probabilistic observation model
to estimate state by observed evidence. The key of particle
filtering is the representation of the posterior distribution
by a set of weighted samples (or particles), so that it can
approximately represent any probability distribution. In [20],
a particle filtering approach is used to track intruders by a
number of infrared sensors with binary outputs. The authors
equipped the room with an array of binary sensors, charac-
terized the firing probability and refractory period of these
sensors by conditional probability distributions (CPDF), and
derived the posterior probability by observing the firing
events.

It has been shown that the accuracy of particle filtering is
related to the number of samples. Therefore, the computation
complexity of particle filter is directly related to the number
of samples, and the optimal number of particles is difficult to
determine. A computational complexity analysis of particle
filters can be found in [25]. In our experience, however, we
have found the trade-off between these convergence times
and accuracy to be more than acceptable for the proposed
application.

III. PROBLEM STATEMENT

The objective of our system is to monitor the location of
Cricket sensor motes in a room of known dimensions. This
tracking must operate in real time, and it must accurately
localize both mobile and stationary sensors. In our proposed
global architecture, envisioned in [5], Cricket motes (referred
to as Beacons) are statically mounted in known locations on
the ceiling, facing downward. Cricket motes (referred to as
Motes) are also affixed to pallets placed on the floor, facing
upward. Refer to Fig. 2 for a visual depiction of the described
setup.

Each Mote broadcasts both an ultrasound pulse and a radio
message containing a unique Mote identifier and a monoton-
ically increasing message number at a pre-determined rate
managed by an internal timer. The message number is used
by the Beacons to differentiate between messages and thus
no global synchronization is required. Every Beacon that
receives a radio message and ultrasound pulse computes its
estimated distance from the Mote based on the difference
in arrival time of the two signals. The distance estimates
computed by all Beacons are centrally aggregated, and our
algorithm uses these estimates to localize the Motes in
discrete time.

A. Assumptions

It is assumed that the floor and ceiling are both flat
and relatively level, and that all pallets are flat and of a
uniform height. Other than the Beacons, Motes, and pallets,
there are no other objects in the room. There is a central
computer that is able to communicate directly with each

Fig. 2. Depiction of layout of sensors for monitoring the location of
hazardous materials in warehouses. The Cricket motes on the ceiling are
referred to as Beacons, while the Cricket motes affixed to the pallets on the
floor are referred to as Motes.

ceiling-mounted Beacon; this is where the algorithm is run.
It is also assumed that all pairwise distance estimates are
probabilistically independent of each other.

B. System Input
The system is initialized with the Euclidean coordinates

of each Beacon. The dimensions of the room are also
specified by length, width, and height. The system collects
pairwise distance estimates between some subset of all
existing {Beacon, Mote} pairs at a predefined rate.

C. System Output
The system computes the estimated Euclidean coordinates

of each Mote, with the objective of minimizing error defined
as Euclidean distance between estimated and true position.

IV. USING PARTICLE FILTERING FOR LOCALIZATION

A. Overview of Particle Filtering
In this subsection, we present a generalized model and

notation for particle filtering. Our system employs the Sam-
pling Importance Resample (SIR) Particle Filter described
in [26]. It is a method used for performing state estimation
of Dynamic Bayes Nets over discrete time. The state of the
object at time t is represented by the random variable xt, and
the observations of the object’s actual state collected at time
t are represented by the random variable zt. There are three
distributions used in the algorithm: the distribution of the
object’s initial state, P(x0), the transition model, P(xt|xt−1),
and the observation model, P(zt|xt). A collection of sam-
ples (also referred to as particles) of the object’s state is
maintained, distributed according to the likelihood of all past
observations: P(xt|z0:t).

At each iteration, every sample state is advanced according
to the transition model. It is then assigned a probability
according to its likelihood using the defined observation
model. These probabilities are normalized, and the set of
samples is then resampled with replacement according to
the computed relative probabilities. This new distribution
of samples implicitly integrates all previous observations,
as a function of the algorithm, and they are distributed
according to their likelihood. The number of sample states
corresponding to a particular state is proportional to the
likelihood that the state matches that of the object.



B. Particle Filtering Applied to Localization

Table I contains important notation that will be used in
the following sections. In our framing of the localization
problem, we run a separate particle filter for each individual
Mote. An object’s state at time t, xit, refers to the true
Euclidean coordinates of Mote i. The observations collected
at time t, zit, refer to a vector of distance estimates computed
by the Beacons between time t − 1 and time t, relative to
Mote i. Our transition model, P(x̂ist|x̂is(t−1)), simply adds
Gaussian noise to the Euclidean coordinates of x̂is(t−1). The
initial distribution of samples, P(x̂is0), places sample states
uniformly at random within the defined space. Our observa-
tion model, P(zit|x̂ist), gives the likelihood of the computed
distance estimates based on empirical data gathered about the
sensitivity pattern of the Cricket motes. A visual depiction
of the algorithm can be seen in Fig. 3.

TABLE I
NOTATION

M The set of Motes, i ∈ M .

B The set of Beacons, j ∈ B.

S The set of Samples, s ∈ S.

T The set of particle filter iteration Times, t ∈ T .

h The height of a mounted beacon, assumed to be a
uniform constant.

xit The true state of Mote i at time t. State is defined
by Euclidean (x, y) coordinates.

zij The distance estimate between Mote i and Beacon j
during calibration.

dij The true Euclidean distance between Mote i and
Beacon j during calibration.

θij The true relative angle between Mote i and Beacon
j during calibration.

zit The vector [zi1t, . . . , zijt, . . . , zimt] of computed
distance estimates relative to Mote i at time t,
relative to each Beacon j, where m is the number
of Beacons.

x̂it The estimated state of Mote i at time t.

x̂ist The state of sample s representing a possible state
of Mote i at time t.

d̂ijst The Euclidean distance between the sample state
x̂ist and Beacon j.

θ̂ijst The relative angle between the sample state x̂ist and
Beacon j.

a, b, c, p, q, r Coefficients used for experimental data fitting.

C. Deriving the Observation Model

It was demonstrated in [5] that the pairwise distance esti-
mates produced by Cricket motes vary based on the relative
angle of the two motes. By the independence assumption of
distance estimates, the observation model is expressed as the
following:

P(zit|x̂ist) =
m∏

j=1

P(zijt|x̂ist) (1)

Fig. 3. An overview of one iteration t of particle filtering for localization.
Pairwise distance estimates are collected zit. Samples are generated by the
transition model P(x̂ist|x̂is(t−1)). The observation model then assigns each
sample a weight according to P(zit|x̂ist), and the particles are resampled
using these weights. The output is the mote’s estimated state x̂it.

Because the locations of all Beacons B are known, given
a sample state x̂ist we can compute the Euclidean distance
and relative angle to each individual Beacon j. Let (xi, yi)
represent the state x̂ist, let (xj , yj) represent the Euclidean
coordinates of Beacon j, and let h represent the height of
the ceiling to which j is mounted. For each pair {x̂ist, j},
we can compute d̂ijst and θ̂ijst as follows:

d̂ijst =
√

(xi − xj)2 + (yi − yj)2 + h2 (2)

θ̂ijst = arccos

(
h

d̂ijst

)
(3)

Using these two aspects of a Mote’s state, we can now
express our observation model as the following:

P(zit|x̂ist) =
m∏

j=1

P(zijt|d̂ijst, θ̂ijst) (4)

D. Using Experimental Data to Model Acoustic Sensitivity

During the calibration phase, we fit the observation model
to the underlying truth from experimental data. Calibration
is performed once before the particle filtering algorithm
is executed. From the results in [5], we can examine the
distance estimate zij produced between a Mote i and Beacon
j based on their true relative distance dij and angle θij . In
these experiments, the distance estimates zij were collected
for a variety of {dij , θij} pairs.

Because the acoustic sensitivity pattern of the ultrasound
signal exhibits a cardioid shape, as depicted in Fig 1, we
assume that the mean, µ, and the variance, σ2 can be
reasonably approximated as a polar function of any arbitrary
distance and angle pair {d, θ}. We refer to this observation
model as Asymmetric Polar (AP):

µ(d, θ) = ad cos θ + bd sin θ + c (5)
σ2(d, θ) = pd cos θ + qd sin θ + r (6)



Using linear regression, we computed the specific values
for the coefficients a, b, c, p, q, r that provided the least
squared error over all pairs {dij , θij} for which there was
available experimental data. By preprocessing these coef-
ficients, much of the computation is implicitly performed
by the formulation, rather than at run time. Given these
coefficients, we can compute µ(d, θ) and σ2(d, θ) for any
{d, θ}. These µ and σ2 functions can then be substituted
into the standard Gaussian probability density function. Thus,
the probability distribution given in Eq. 4 can be approxi-
mated using the following function, instantiated with actual
{d̂ijst, θ̂ijst} values:

P(zijt|d̂ijst, θ̂ijst) =
1√

2πσ2(d̂ijst,θ̂ijst)
exp

{
− (µ(d̂ijst,θ̂ijst)−zitj)

2

2σ2(d̂ijst,θ̂ijst)

}
(7)

To compare the formulation as a polar function, we
constructed a similar observation model with µ, and σ2

formulated as linear functions of d and θ. This observation
model is referred to as Asymmetric Linear (AL). For this
model, Eqns. 5 and 6 are formulated as follows:

µ(d, θ) = ad + bθ + c (8)
σ2(d, θ) = pd + qθ + r (9)

We then computed this set of coefficients a, b, c, p, q, r
using the same approach as described above. Using these
coefficients and the functions in Eqns. 8 and 9, µ, and σ2

can be used in Eq. 7 without additional modification.
Finally, to test the effect of the relative angle of mote poses

when computing distance estimates, we also constructed an
observation model with µ, and σ2 formulated as linear func-
tions of only distance d. This observation model is referred
to as Symmetric Linear (SL). For this model, Eqns. 5, and 6
are formulated as follows:

µ(d, θ) = ad + 0θ + c (10)
σ2(d, θ) = pd + 0θ + r (11)

Again, this set of coefficients a, b, c, p, q, r was computed
using linear regression with b = q = 0. Using these
coefficients and the functions in Eqns. 10 and 11, µ, and
σ2 can be used in Eq. 7 without additional modification.
The accuracy with which each of these models localized the
Motes is evaluated in Section V-B.

V. EXPERIMENTAL RESULTS

We evaluate the performance of our algorithm with sim-
ulator and physical experiments. The objective of the sim-
ulator experiments is to determine an acceptable physical
beacon configuration. To determine which configurations are
acceptable, we look for a layout suitable for a warehouse
environment that has estimation error less than 10 cm. We
define estimation error (|xit − x̂it|,∀i ∈ M, t ∈ T ) as an
objective in Section III-C.

(a) Initial Distribution (b) After Convergence

Fig. 4. Graphical User Interface of Particle filter simulator. (a) Initial
particle distribution of first iteration. (b) Estimated positions from of the
motes. The blue dots represent the actual poses of motes, red dots for the
estimated ones, squares for beacons and green dots for particles. Though
difficult to see, particles are present under the estimated positions in (b).
The length of the line connecting the actual motes and estimated nodes
reflect the errors of estimation.

A. Simulation Results

To describe the best physical configuration of beacons,
we visualize estimation error according to the dimensions of
ceiling height and beacon density. We constructed a simulator
that was capable of performing many trials in a short amount
of time. Performance was measured as distance estimation
error for various ceiling heights h (reported in cm) and
inter-beacon (beacon to beacon) distances k (reported in
cm). Beacons are evenly spaced at the inter-beacon distance
in a grid. Our objective was to determine an appropriate
beacon configuration in order to minimize total computation
expense, total number of needed beacons at a reasonable
ceiling height while still maintaining an acceptable measure
of error.

The simulator is implemented in a Java 1.5 environment
with an Applet Graphical User Interface (GUI) used to
visualize the actual positions, estimated positions, and par-
ticle locations of Beacons and Motes (shown in Fig. 4).
At initialization, a set of particles for each node is gen-
erated with a uniform distribution as shown in Fig. 4(a).
After computing the observed measurements, the posterior
probability is calculated and the particles converge to an
estimated position as shown in Fig. 4(b). Each mote is
given a random trajectory of (xt, yt) pairs. The trajectory
is generated at each time step by perturbing the current, true
position with a sample drawn from a Gaussian distribution
with (µ = 0, σ = 10).

The observation model used for the experiments is Asym-
metric Linear. Experiments were run on IBM xSeries 330
machines equipped 1.0 GHz Intel Pentium III CPUs and
1.5GB ECC PC133 SDRAM. Each experiment consisted of
10 motes, over 10 iterations, with 5000 particles per mote.
These experiments had an average run time of 1.25 minutes.

For our first experiment, we evaluate ceiling height with
moving nodes. Ten motes are placed in the simulator space
of 1000x1000 cm size room. Beacon density is held constant
and ceiling height is varied from h = 120, . . . , 640 with a
linear step size of 10. This measurement is evaluated for



Fig. 5. Estimation error against ceiling height. In this representative plot,
inter-beacon distance k = 180 and particle density is 5000. Average error
of all 10 nodes over 10 iterations is shown against each ceiling height.
Standard deviation is shown with vertical bars. A sharp threshold is shown
for h > 590.

Fig. 6. Estimation error against beacon density. In this representative plot,
ceiling height h = 240 and particle density is 5000. Average error of all
10 nodes over 10 iterations is shown against each inter-beacon distance.
Standard deviation is shown with vertical bars. A sharp threshold is shown
for k > 330.

all beacon densities as described in the next experiment.
As shown in Fig. 5, distance estimation error increases
proportionally with ceiling height and is sharply thresholded
for heights above 590 cm.

In the next experiment, we evaluate beacon density with
moving nodes. Again, ten motes are placed in a simulator
space of an 1000x1000 cm size room. Ceiling height is held
constant while inter-beacon distance is varied from k =
120, . . . , 350 with a linear step size of 10. This measurement
is evaluated for all ceiling heights evaluated in the previous
experiment. As shown in Fig. 6, distance estimation error
increases proportionally with inter-beacon distance and is
sharply thresholded for distances above 330 cm.

Both ceiling height and inter-beacon density are plotted
in Fig. 7. This plot depicts an “acceptable zone” of inter-
beacon density and ceiling height. We define acceptable to
be configurations where the error is less than 10 cm.

Fig. 7. Estimation error along both dimensions studied for beacon config-
uration. This plot depicts an “acceptable zone” for beacon configurations.
Any configuration with error less than 10 cm is deemed acceptable.

B. Physical Experiment Results

Using the configuration results of the simulator, we in-
stalled the motes in our lab to test performance. The model
of the mote was MCS410CA (or Cricket mote v2), running
TinyOS 1.1.7. Using the MIB510CA programming board,
the Cricket software (release 2.3.0) was modified to transmit
pairwise distances to a bay station. None of the on-board
distance calculations were modified.

The primary metric of our experiment was again distance
estimation error |xit − x̂it|,∀i ∈ M, t ∈ T . We installed six
Cricket motes in beacon mode at a uniform height of 274
cm with an approximate inter-beacon distance of 198 cm.
Beacons were installed parallel to the floor with ultrasonic
sensors directed downward. Rotation parallel to the floor
plane is not explicitly controlled, whereas tilt and yaw are
avoided. A trajectory was then marked on the floor with the
same x-y coordinate plane as the beacons. One cricket was
configured as a listener and then moved along the trajectory
on the floor.

(a) Beacon installation (b) Tracked Mote

Fig. 8. Installed cricket motes at a uniform height of 274 cm (a). Ultrasonic
sensors are directed downward. Trajectory of the mote as steps are marked
on the floor and measured to get the actual location (b). Mote to be localized
is directed upward.



Fig. 9. Top view of the lab floor. Lines indicate the actual versus estimated
trajectory in a portion of the lab of 450 cm x 250 cm. The observation model
for this experiment is Asymmetric Polar. The plot depicts one experimental
run whose overall estimation error was closest to the mean reported for the
AP observation model.

In order to apply our algorithm to the sensor evidence, the
motes were programmed to send pairwise distance estimates
at a set interval to the bay station. The experiment is
designed to control specific locations at specific iterations.
Accordingly, each iteration is 10 seconds long. To process
the algorithm, the recorded pairwise distances are passed into
the simulator to analyze and visualize the estimated positions
of the motes. A comparison of actual and estimated trajectory
of the experimental run is shown in Fig. 9.

We compare the effect on estimation error for the three
observation models Asymmetric Polar (AP), Asymmetric
Linear (AL), and Symmetric Linear (SL). Using the same
experimental data from the physical experiments, the three
observation models are compared in Fig. 10. It is shown that
an asymmetric observation model (AL and AP) is strictly
better than an observation model that does not consider angle
(SL). Moreover, this experiment demonstrates that a linear
approximation with angular dependence of the empirical
data of the ultrasonic sensors (AL) has performance that is
very close to that of an approximation that considers the
polar model of the cardioid sensitivity pattern (AP). The
estimation error for each model over all physical experiments
is SL: µ = 4.40, σ = 4.50, AL: µ = 4.01, σ = 4.06,
and AP: µ = 3.91, σ = 4.05. These experiments suggest
that asymmetric observation models can improve position
estimates by as much as 11%.

VI. CONCLUSION AND FUTURE WORK

We consider the use of wireless sensor networks to au-
tomatically track “perceptive pallets” of materials in ware-
houses for the purpose of monitoring volumetric and spatial
constraints. We measure and characterize the ultrasound
response from standard “Cricket” wireless sensor motes
and beacons. We develop a non-parametric particle filtering
approach to estimate trajectories of moving motes and in-
troduce two asymmetric observation models that incorporate

Fig. 10. Comparison of the three observation models in this paper.
The pairwise distances of 33 iterations from the physical experiment are
compared over 9 experimental runs of 50 particle filter estimations each.
When angle is considered (AL and AP), error is shown to be strictly less
than a distance only observation model.

measured cardioid-shaped response patterns of ultrasound.
We use simulation to study the effects of mote placement:
position error as a function of ceiling height and beacon
density, and then perform physical experiments to evaluate
the effectiveness of asymmetric vs. symmetric observation
models for pallet tracking.

The key contribution of our research is to measure the
effects of spatial asymmetry in ultrasonic sensors and to
incorporate these sensitivity patterns into the particle filtering
observation model.

In future work, we will incorporate the fact that we
usually have a precise map of the warehouse interior. Since
ultrasound requires line of sight communication, this map
can account for some of these challenges by explicitly
considering known obstacles, known transportation routes,
and known storage areas. We will combine this information
with the particle filter to further improve position estimates
and develop fast algorithms for automatic monitoring of
volumetric and spatial constraints. Additionally, we will
expand the physical experimentation to an actual warehouse
environment using the techniques and configurations recom-
mended by this research.
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