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In robot motion planning, we say that an algorithm
is complete for a problem if it is guaranteed, for all
instances of the problem, to �nd a solution when one
exists and to return failure otherwise. Completeness is
a desirable property. It provides a guarantee that the
algorithm will work as expected for all inputs and thus
can be dependably included in a larger system. This is
especially important when algorithms are incorporated
into industrial applications, where delays and failures
can be extremely costly.

In this paper we consider the completeness of several
algorithms in robot motion planning. The two condi-
tions for completeness, �nding a solution if it exists,
and terminating otherwise, suggest a distinction be-
tween algorithms that satisfy the former but not the
latter: we refer to these as \exact" algorithms and give
examples.

We then ask the stronger question: does a solu-
tion exist for all instances of a problem? We propose
the term \solution-complete" to describe a property of
problems and describe two recent results: a proof that a
part feeding problem is solution-complete, and a proof
that a �xturing problem is not solution-complete.

1 Introduction

Although robot motion planning is a general topic, we
con�ne our discussion to the class of problems that
can be formulated computationally, for example nav-
igation, assembly, grasping, and the design of parts
feeders. In all cases, we represent physical entities with
mathematical models. Each problem de�nes a class of
allowable inputs and a class of allowable solutions.

For example, the Piano Movers' problem asks if a
robot can be moved from one con�guration to another
without colliding with obstacles. There are many ver-
sions of this problem depending on the class of allow-
able inputs (obstacles, robots, movements), and the

class of solutions (shortest or safest paths, etc.). We
might consider a version of the Piano Movers' problem
when inputs are restricted to 2D polygonal obstacles
and a 2D polygonal robot, and solutions are restricted
to shortest paths consisting of pure translations of the
robot.

Latombe's text [17] gives a comprehensive review
of developments in Robot Motion Planning. Latombe
presents the concept of \con�guration space" (C-space)
as a unifying theme. In the Piano Movers' problem,
the initial and desired �nal con�gurations of the robot
can be speci�ed as points in the continuous manifold of
C-space. A problem instance de�nes surfaces in the C-
space; solutions can be speci�ed as free paths through
this space. C-space can also be used to formulate prob-
lems involving contact mechanics and friction, for ex-
ample the space of grasp con�gurations for three point
contacts on a 2D object could be speci�ed with a 3D
C-space where friction de�nes subsets of the space that
provide frictional form closure of the object.

As demonstrated in [20], problems that include un-
certainty in the initial con�guration can also be formu-
lated in this framework, where all possible con�gura-
tions of the robot is represented as a subset of C-space
and commanded actions map between sets. Actions
that allow compliant contact with a known boundary
can be chained together to collapse a subset of C-space
to a desired point.

In robot motion planning, a solution does not always
exist. For example, it is easy to construct instances
of the Piano Movers' problem such that there is no
free path from initial to �nal con�gurations. Similarly
with problems that include uncertainty in the initial
con�guration: it is easy to construct cases where there
is no sequence of commanded actions that allow the
initial subset to be collapsed to the desired point. For
other problems, such as grasping, it may be di�cult
to construct instances where a solution does not exist;
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for some problems it may be possible to prove that a
solution exists for all instances.

An algorithm, A , for problem P , accepts as input (a
representation of) an instance of P and should return
a solution. Some algorithms may fail to �nd a solution
when one exists, or may fail to terminate. Examples
will be given below. By convention, we say that A is
complete for P if it is guaranteed to �nd a solution
when one exists and to return failure otherwise [17,
p.18]1.

Completeness is closely related to the way a prob-
lem is de�ned: algorithm A may not be complete for
problem P ; however by adding additional assumptions
limiting the class of inputs, it may be the case that A is
complete for problem P0.

Completeness is a desirable property. It provides a
guarantee that the algorithm will work as expected for
all inputs and thus can be dependably included in a
larger system [8]. This is especially important when al-
gorithms are incorporated into industrial applications,
where a delay on the assembly line can cost thousands
of dollars per minute. Completeness as speci�ed above
is related to the notion of correctness in program ver-
i�cation, where the behavior of a procedure is mathe-
matically proved so that it can be reliably included in
a large system.

As in program veri�cation, the practice of proving
completeness in robot motion planning is more often
observed in the breach. Algorithms are often reported
only with examples illustrating instances where they
successfully �nd a solution. Completeness focuses at-
tention on cases where algorithms may fail. There is
a natural bias against thinking about such cases, and
it can be extremely di�cult to precisely characterize
the class of inputs for which an algorithm is complete.
Yet it is important to address this issue if robot motion
planning algorithms are to be adopted outside of the
laboratory.

In this paper we consider the completeness of several
algorithms in robot motion planning. The two condi-
tions for completeness, �nding a solution if it exists,

1The term \complete" has other meanings. In logic, a
theory (set of sentences closed under logical implication) is
complete if every sentence or its negation can be proved. In
complexity analysis, a problem to which all problems in a
class can be reduced is complete for this class (e. g. NP-
Complete).

and terminating otherwise, suggest a distinction be-
tween algorithms that satisfy the former but not the
latter; we will use the term \exact" to describe the
former property.

Closely related to the completeness of algorithms
is the stronger question: does a solution exist for all
instances of a problem? For example, can we spec-
ify conditions on inputs and outputs such that a so-
lution exists for all instances of some version of Pi-
ano Movers' problem? In some cases it is possible to
prove completeness; more commonly, it is su�cient to
demonstrate a single counterexample. We introduce
the term \solution-complete" to characterize this prop-
erty of problems. We review two recent results: a proof
that a part feeding problem is solution-complete, and a
proof that a �xturing problem is not solution-complete.

2 Incomplete Algorithms

Consider a navigation algorithm that uses a naive po-
tential �eld to trace a path from the initial pose toward
a desired pose using gradient descent. It is well known
that greedy algorithms such as this can lead to local
minima which may cause the algorithm to terminate
without �nding a path when one exists. Thus this al-
gorithm is incomplete: it is not guaranteed to �nd a
solution even when one exists2.

Algorithms that use a uniform grid (lattice) to dis-
cretely sample a continuous solution space generally
sacri�ce completeness since a solution may be hidden
in the interstices. Consider the problem, introduced
by Peshkin and Sanderson [26], of �nding a sequence
of fence angles that will orient a given polygonal part
on a conveyor belt as it brushes past the sequence of
fences. Consider an algorithm that samples the range
of fence angles at 10� increments and enumerates all
arrangements of length 1, 2, and so on, until a solution
is found. Since this algorithm may overlook solutions
that contain fences at odd angles, it is not guaranteed
to �nd a solution when one exists.

Furthermore, this algorithm considers longer and
longer sequences of fences until a predetermined length

2Rimon and Koditscheck recently gave conditions under
which it is possible to construct a potential �eld with a
unique minimum. These conditions de�ne a class of prob-
lems that are solution-complete. For these problems the
potential �eld algorithm is complete [28].
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limit is used to terminate the algorithm. Thus there
are two ways in which this algorithm may fail to �nd
a solution: it may overlook a short solution that falls
between lattice points, or it may terminate before con-
sidering a longer solution that lies on the lattice.

It is important to note that oating-point approxi-
mations can cause an algorithm to overlook solutions,
as this is equivalent to imposing a uniform (yet �ne!)
grid on the set of available solutions. An otherwise
complete algorithm may fail to �nd a solution if it is
buried beneath the resolution of its arithmetic. In com-
putational geometry, the real-RAM model of computa-
tion is generally assumed for the purposes of proof,
although it is notoriously di�cult to implement [16].
For computing with angular quantities, one approach
is to use rational, or \exact", arithmetic [4, 23].

3 Exact Algorithms

Suppose an algorithm satis�es only the �rst the condi-
tion for completeness: it is guaranteed to �nd a solution
when one exists. Such algorithms are thorough in that
they will not overlook potential solutions; yet they are
not necessarily complete. As suggested by John Reif,
we use the term \exact" to describe such algorithms.

Consider a navigation algorithm that uses quad-tree
decomposition to subdivide the con�guration space. At
each iteration the space is further divided in search of
a collision-free path from start to goal. If a path ex-
ists, this algorithmwill eventually �nd it. However, if a
path does not exist, the algorithmmay continue search-
ing with �ner and �ner decompositions and may not
terminate. This algorithm is exact but not complete3.

One characteristic of exact robot motion planning
algorithms is that they often partition a continuous
C-space space into equivalence classes (cells) based on
the geometry of the environment. For example, part
vertices might de�ne critical angles in a partition of
C-space. Partitions induced by a collection of hy-
perplanes are called \arrangements" in Computational
Geometry, which seeks precise bounds on the size of
the partition [15].

3Suppose we terminate the decomposition at a pre-
speci�ed resolution. Latombe uses the term \resolution-
complete" for the property that an algorithm is guaranteed
to �nd a solution when a solution exists at that resolution.

4 Complete Algorithms

An algorithm is complete if it is exact and guaranteed
to terminate with a negative report if a solution does
not exist. A good example is the Visibility Graph algo-
rithm for navigation, which searches a graph that con-
tains a link between all pairs nodes that are \visible"
in the con�guration space. The algorithm is guaran-
teed to �nd the shortest path or to report that no path
exists.

Other examples are Erdmann and Mason's tray tilt-
ing planner [10] and a search-based algorithm for plan-
ning sequences of grasp motions to orient polygonal
parts [13]. Both of these algorithms partition the an-
gular space of actions into a �nite number of equiva-
lence classes based on part shape and then enumerate
all combinations of elements in this partition. Note
that we can terminate a search path when we reach a
state that has already been encountered since there is
never any advantage to looping. Since there are a �-
nite number of possible actions, and a �nite number of
possible state sets (the power set), these search based
planners are guaranteed to �nd a plan if one exists and
to eventually terminate otherwise.

Another example where the problem can be con-
verted to a graph search is Erdmann, Mason, and
Vanecek's algorithm for orienting three-dimensional
parts [9]. Given an n-sided polyhedral part resting on
a planar table, the objective is to �nd a sequence of
tilting angles for the table that will bring a particular
part face into contact with the table (thereby elimi-
nating all but one degree of rotational freedom). The
authors gave a graph-based algorithm that is guaran-
teed to �nd a plan if one exists and to report failure
otherwise.

These algorithms test each cell in a �nite partition of
solution space. If a solution exists at any point in a cell,
then all points in that cell are solutions. Thus the al-
gorithm is exact and is guaranteed to terminate. Such
partitions also characterize several algorithms based on
what Donald calls a \non-directional backprojection".
Donald originally proposed this partition for planning
compliant motions in the plane [7]. It has since been
applied to planning navigation with landmarks [19] and
to Assembly Planning [30]. All of these algorithms are
complete.

A related problem is �nding grasps for polygonal
parts. Here the solution can be characterized as 4
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points along the continuous boundary of the part that
achieves form closure (the contacts can resist any ap-
plied forces and torques). Nguyen [25] partitioned the
part boundary into equivalence classes and gave an al-
gorithm that �nds a form closure grasp, if one exists,
in time O(n4).

A variation of grasp planning restricts contacts to
lie on a regular lattice, as is the case for modular �x-
tures. Modular �xtures are gaining wide use for exible
manufacturing and job shop machining. A modular
�xture is an arrangement of �xture elements (�xels)
that will locate and securely hold a given part. Re-
cently, polynomial-time algorithms have been reported
that are guaranteed to �nd a form closure �xture if one
exists [3, 29].

5 Solution-Complete Problems

For algorithms that are complete, it is natural to ask:
When does a solution exist?. In path planning, it is
easy to construct cases where a solution does not exist.
This is also true for motion planning with uncertainty
by making the initial set of possible con�gurations suf-
�ciently large. As stated above, it is sometimes pos-
sible to prove that a solution exists for all instances
of a problem. In such cases we say that a problem is
solution-complete. In other cases, we can construct a
counterexample to prove the converse.

There are several examples in robot motion planning.
One is Akella and Mason's proof that in the absence
of obstacles, it is always possible to position and orient
a polygonal part by pushing [1]. They prove this by
de�ning a general linear program for the problem and
using linear algebra to show that a positive solution
must exist.

Another is Barraquand and Latombe's proof for a
mobile robot, subject to (nonholonomic) rolling con-
straints, whose steering angle can take on only two
distinct angles. The authors showed that in the ab-
sence of obstacles, a path always exists between any
two planar con�gurations [2].

For a one-dimensional version of tray tilting, [9]
showed that a plan always exists as long as the polyg-
onal part has a unique angle in its transition diagram.

And although lower bounds on the number of con-
tacts required to achieve form closure were known since
the turn of the century, [24, 22] recently proved upper

bounds. In particular, that for any piecewise-smooth
compact connected planar body, excluding surfaces of
revolution, a form-closure grasp with 4 contacts always
exists.

Solution completeness is similar to the notion of con-
trollability in Control Theory: a linear system is con-
trollable if, for any state of the system, there exists a
solution (a control function) which will drive the sys-
tem to the zero state in �nite time [6, 18]. For example,
it is known that in the absence of obstacles, a wheeled
robot can reach any con�guration in the plane. We
might say that from any initial con�guration we can
always drive the robot to the zero con�guration. Lynch
and Mason recently used results from non-linear con-
trol theory to give conditions under which a plan exists
to push a passive part to the zero con�guration using
a planar fence [21]. In such cases we say that the part
is \controllable". It would be interesting to character-
ize a class of obstacles such that a plan always exists
to reach the zero con�guration. However it is not clear
that results from Control Theory can be applied to this
type of problem.

In the next section we describe a problem in Robot
Motion Planning with Uncertainty and show that the
problem is solution-complete.

6 Proving Solution-Completeness

Consider a planning algorithm that �nds plans to ori-
ent a given part using a parallel-jaw gripper: given a
list of n vertices describing a polygonal part whose ini-
tial orientation is unknown, �nd the shortest sequence
of gripper actions that is guaranteed to orient the part
up to symmetry in its convex hull. We prove that a
plan exists for all polygonal parts and thus that the
problem is solution-complete. The proof is based on
an algorithm described in greater detail in [12].

When a polygonal part is grasped with the friction-
less gripper, it assumes one of a �nite number of \sta-
ble" con�gurations where at least one edge of the part's
convex hull is in contact with a jaw. The outcome can
be predicted with the squeeze function,s : S1 ! S1,
such that if � is the initial orientation of the part with
respect to the gripper, s(�) is the orientation of the
part with respect to the gripper after the squeeze ac-
tion is completed. For a polygonal part, the piecewise-
constant squeeze function is derived as follows.
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Figure 1: A part and its width function.

The width function for a 2D part is the distance
between parallel supporting lines at angle � as shown
in Figure 1. All orientations that lie between a pair
of adjacent local maxima in the width function will
map to the orientation corresponding to the enclosed
local minimum, i. e. the squeeze function is constant
over this interval of orientations. The result is a step
function.

We assume that all steps in the squeeze function are
closed on the left and open on the right. Strictly speak-
ing, the squeeze function has value s(�) = � at its dis-
continuities, corresponding to an unstable equilibrium
where the part is wedged between two exactly-aligned
vertices. We could de�ne a squeeze action at angle �
to include closing and opening the gripper at angle �
followed by closing the gripper at angle � + �, rotat-
ing the gripper by ��, and then opening the gripper.
In [14], we show how to �nd an appropriate � for any
polygonal part such that the combined action has a
piecewise constant transfer function where each step is
closed on the left and open on the right. In practice
however, mechanical vibration in the gripping mech-
anism is su�cient to dislodge such wedged con�gura-
tions, and after the �rst squeeze action causes the part
to rotate into a stable con�guration, the plan's margin
for error (speci�ed below) allows us to avoid actions
that could produce a wedged con�guration. For more
on this issue, see [5].

In what follows, we use the term interval to refer
to a connected subset of S1. For an interval �, let j�j
denote its Lebesgue measure. We de�ne an s-interval
to be a semiclosed interval of the form [a; b) such that
a; b are points of discontinuity in the domain of squeeze
function s. For an s-interval �X , let �X refer to its in-
cluded bounding point. Since there are O(n) disconti-
nuities in the squeeze function, there are O(n2) unique
s-intervals , each of which has non-zero measure. We
de�ne the s-image of a set, s(�), to be the smallest in-

terval containing the following set: fs(�)j� 2 �g. Note
that the s-image of any set will be a closed interval.

The algorithm begins with an s-interval whose im-
age is a point. It continues, �nding larger and larger
s-intervals . When the algorithm terminates, the re-
sulting sequence of s-intervals can be transformed into
a sequence of squeeze actions that, in e�ect, \funnel"
the largest s-interval into a unique �nal orientation.
The algorithm is given below.

1. Compute the squeeze function.

2. Find the widest single step in the squeeze
function and set �1 equal to the correspond-
ing s-interval . Let i = 1.

3. While there exists an s-interval � such that
js(�)j < j�ij,

� Set �i+1 equal to the widest such s-
interval .

� Increment i.

4. Return the list (�1;�2; :::;�i).

We illustrate the algorithm using the squeeze func-
tion for the rectangular part as shown in Figure 2.
Since this part has aspect ratio 1:5, let a = atan2(3; 2).

In step 2 of the algorithm, the widest single step is
found and �1 is set to be the corresponding s-interval
on the horizontal axis: [�� a; �+ a). Note that s(�1)
is the unique orientation at angle �.

In step 3 of the algorithm, we seek the widest s-
interval whose s-image has smaller measure than �1.
As illustrated in Figure 3, this can be visualized by
aligning the lower left corner of a box of dimension j�1j
with the leftmost point from each step in the squeeze
function. If the squeeze function emerges from the right
edge of the box, then the s-image of the corresponding
s-interval has smaller measure than �1. The largest
such s-interval in this case is �2 = [��a; 2��a). Note
that s(�2) = [�; 3�=2], js(�2)j = �=2 < j�ij = 2a,

Continuing in this manner, wider and wider s-
intervals are found until the loop terminates. This will
occur when j�ij = T , a period of symmetry in the
squeeze function. For the rectangular part, the algo-
rithm terminates with i = 2 since j�2j = �.

Theorem 1 For any polygonal part, we can always
�nd a plan to orient the part up to symmetry.
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Figure 2: In step 2, the widest single step in the squeeze

function is identi�ed. All the orientations in �1 map into

the single �nal orientation, s(�1).
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Figure 3: Illustrating step 3 of the algorithm.

Proof. Any polygonal part will generate a piecewise-
constant squeeze function, s : S1 ! S1, where all s-
intervals have non-zero measure and s(�+ T ) = s(�) +
T , where T is a period of symmetry. To simplify the
problem of wraparound at 0, in this section we extend
s to a function on the real line, s : < ! <, that has
exactly the same value as before on [0; 2�). Elsewhere,
it is speci�ed as s(� + T ) = s(�) + T .

We prove the claim by showing that for any such
squeeze function, we can always �nd a sequence of s-
intervals , (�1;�2; :::;�i), of increasing measure with
the condition that �j has larger measure than the s-
image of �j+1. In other words, we must show that
for any piecewise-constant monotonic squeeze function

and any s-interval , we can always �nd a larger s-
interval unless it corresponds to a period of symmetry
in the squeeze function.

Let h be the measure of some s-interval . Either we
can �nd a larger s-interval whose s-image is smaller
than h,

9�; s(� + h)� s(�) < h; (1)

Or h is a period of symmetry in the squeeze function:

8�; s(� + h) = s(�) + h; (2)

where the quanti�ers range over the interval [0; T ).

To understand formula 1, consider that we've
reached a point in the algorithm where the current s-
interval is �j = [�j; �j + h). Formula 1 says that there
is some closed interval, � = [�; �+h], whose s-image is
smaller than �j . We can expand � (without increasing
its s-image ) by extending it to the right until we reach
a discontinuity in the squeeze function. This yields an
s-interval whose s-image is smaller that �j. The di�er-
ence between this s-interval and � is an open interval
and hence has nonzero measure. Thus this s-interval
will have larger measure than �j.

We can also interpret formula 1 with reference to
�gure 3. The formula states that we can always �nd a
position for the lower left hand corner of the box such
that the squeeze function enters on the left edge of the
box and exits on the right edge.

To show that for any such squeeze function and any
h, either formula 1 or formula 2 must hold, consider
the integral of the function s(�+h)� s(�)�h over the
interval [0; T ).

Z T

0

[s(� + h)� s(�) � h]d�

=

Z T+h

h

s(�)d� �

Z T

0

s(�)d� � hT (3)

= �

Z h

0

s(�)d� +

Z T+h

T

s(�)d� � hT (4)

= �

Z h

0

s(�)d� +

Z h

0

[s(�) + T ]d� � hT (5)

= �

Z h

0

s(�)d� +

Z h

0

s(�)d� + hT � hT (6)

= 0: (7)

Since this integral is zero, either there is some point
where the function is less than zero (formula 1 is true),
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or the function is uniformly zero (formula 2 is true, i.e.
h = T ).

Hence we can always continue to �nd larger s-
intervals until we reach a period of symmetry in the
squeeze function. We have shown earlier that we can
transform this sequence of s-intervals into a plan to ori-
ent the part up to symmetry. Thus we've shown that
a plan exists for all polygonal parts and hence that the
problem is solution-complete.

Rao and Goldberg recently extended this result to
the class of algebraic parts [27]. We note that a proof of
solution-completeness for problem P has consequences
for its algorithms: if A is an exact algorithm for prob-
lem P and P is solution-complete, then A is complete.
For example, the result given in this section implies
that the exact algorithm in [13] is complete.

7 Disproving Solution-completeness

Brost and Goldberg [3] recently gave a complete algo-
rithm that is guaranteed to �nd a form closure �xture
for a given polygonal part in polynomial time and to
terminate with a negative report otherwise. For all
parts that we tested, the algorithm found dozens of so-
lutions. This leads us to speculate that the problem
is solution-complete. In this section we show that it is
not.

The algorithm considers a class of �xtures using 4
frictionless point contacts: 3 locators and a clamp
(3L/1C) such that each are attached to a square lattice
of point holes. In particular, is any convex polygonal
part �xturable in this fashion? Clearly if the part is
very small with respect to the lattice spacing it may fall
between the holes and thus not be �xturable. However,
we might conjecture that for parts of su�cient \width"
the method is complete: it is always possible to �nd a
3L/1C �xture to hold the part. Below we construct a
counterexample; details can be found in [31].

The maximum and minimum values of the width
function are well de�ned; we denote them with �d(S)
and d(S), respectively. The minimum width of a part
is a useful way to characterize its size.

To construct a polygonal part of arbitrary size that
is un�xturable, we show that for any given positive
number M , we can construct a disk of size > M that
can make contact with at most 2 lattice sites. We then
show how to transform this disk into a regular polygon

while preserving this property. Since this polygon can
make contact with at most 2 locators, it cannot be
�xtured under the 3L/1C model.

From geometry, we know that any three noncolinear
points uniquely determine a circle. Thus, every non-
trivial lattice site triplet, t, determines a disk which we
denote by s(t). If two triplets determine a disk of the
same width, we say that these triplets are equivalent.

Let the maximum width of a triplet be the length of
the longest side of the triangle it determines.

Lemma 1 For any given width there exists a disk of
greater width that can achieve contact with at most two
lattice sites.

Proof. For any given positive number M , let S(M )
be the set of disks with widths between M and M + 1
de�ned by triplets of lattice sites. S(M ) is �nite since
any disk s(t) has a width no less than the maximum
width of t and the number of non-trivial triplets with
maximumwidth less thanM +1 is �nite. Let us de�ne
the set of widths as

D(M ) = fd(s(t) j s(t) 2 S(M )g

Then D(M ) is a �nite set. Let c be any width in
the interval (M;M + 1] not in D(M ), the disk with c
as its width can achieve contact with at most two �xel
points. (Figure 4)

f1

e( p1)

e(p2)

g1

f2

g2

f1

Figure 4: The disk of indicated width can achieve contact

with at most two lattice sites

Based on this disk, we now construct a polygon that
can achieve contact with at most two �xel contacts.
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Theorem 2 For any given width there exists a con-

vex polygon of greater width that can achieve contact
with at most two lattice sites.

Proof. For any given positive number M , let Sc de-
note the disk with the width c, which is constructed
in the lemma 1. By the proof of the lemma 1, Sc
has at most two �xels on its boundary. Obviously for
any �xel pair with a length less than or equal to c,
we can always locate the disk Sc such that the two
�xel points are on its boundary. Therefore we only
need to consider the set of all non-identical pairs of
sites with length less than or equal to c. Let us de-
note this set by Q. It is clear that Q is a �nite set.
Assume jQj = k; k > 0,then we can represent Q as
Q = fpi j 1 � i � kg. We de�ne �(p) as the mini-
mum distance from any �xels, other than the coordi-
nates of p, to the boundary of the disk @Sc. Then we
have �(pi) = inffd@Sc(f) j f 2 F; f =2 pig > 0, for all
1 � i � k, by the construction of the disk Sc. Let
� = minf�(pi) j 1 � i � kg, then we have � > 0. There
exists an inscribed regular polygon, P , of Sc, such that
the length of its side is less than 1

2
�. (Figure 5) In

order to achieve this, we only need to choose the num-
ber of sides of P , denoted by N , large enough, since
the length of the side of P , denoted by L, satis�es the
following

L = c sin
�

N
:

Therefore we only need choose

N >
�

sin�1 �
2c

:

Since c > M (by the construction of Sc in the lemma
1), then we can select N to be large enough, such that
d(P ) > M .

We denote the maximumdistance between P and Sc
by �. Since N � 3, then

� =
1

2
L tan

�

2N
<

1

2
L < L <

1

2
�:

Claim: Such a polygon, P , can achieve contact with
at most two �xel points.

Proof of Claim: Let f , g and h be three �xel points,
among which each pair has a length no greater than
c. (If some pair has a length greater than c, then they
cannot form a three-point contact, due to the fact that
the maximum width of P is c.) Without loss of gener-
ality, we assume that P has f and g as its two� point

m

f g

c/2

δ

s<ε/2

=c/2−m

π/2Ν

π/Ν

Figure 5: The construction of the polygon that does not

have a 3L/1C design.

contact, and the contacting edges are ef and eg, re-
spectively. Now we put P inside the disk Sc such that
P is a inscribed polygon of Sc, then we position the
disk (with P inscribed) on the lattice, such that f and
g are on the arcs corresponding to ef and eg , respec-
tively. (This can be always achieved.) By the construc-
tion of Sc, we know that d@Sc(h) � �. Therefore, by
the construction of the equilateral polygon P , the dis-
tance from h to the boundary of P is greater than 1

2
�,

namely d@P (h) >
1

2
�. In order to achieve two � point

contact on the edges ef and eg , we can always rotate
P inside the disk Sc �rst, then translate it to achieve
the contact. After the rotation, f and g will be still on
the corresponding arcs. Therefore the distance needed
for translation is less than 1

2
�, because the distance of

the translation is bounded by the length of the side of
P , which is less than 1

2
�. But this translation won't be

enough to make h the third point contact, since h is
distant from the edge of P more than 1

2
�.

Hence P can achieve contact with at most two lattice
sites.

Thus we have shown how to construct an in�nite
set of polygonal parts that cannot be �xtured using 3
point locators and a point clamp and so for any of these
polygons the planning algorithmwill terminate with no
solutions. Thus the problem is not solution-complete.
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Perhaps by suitably restricting the set of admissible
parts we can show that a �xture always exists; this is
currently an open problem.

8 Discussion

In this paper we focused on the issue of completeness in
robot motion planning and speci�ed three properties:

� An algorithm is exact if it is guaranteed to �nd a
solution if one exists.

� An algorithm is complete if it is exact and guar-
anteed to terminate with a negative report if a
solution does not exist.

� A problem is solution-complete if a solution exists
for all instances.

There are many subtleties that are not addressed in
this discussion, such as categories for probabilistic al-
gorithms that terminate with probability one [11], and
the relationship between completeness and complexity.
Complexity analysis generally requires showing com-
pleteness: it is not clear how to de�ne the asymptotic
complexity of an algorithm that is not guaranteed to
terminate. For solution-completeness, it is possible in
some cases to prove that solutions always exist without
providing a constructive algorithm for �nding them.
Similarly, the asymptotic complexity of the decision
problem may be lower than the complexity of �nding
a solution.

As noted in the Introduction, algorithmic complete-
ness bears some relation to the notion of correctness in
program veri�cation. In fact, Rimon and Koditschek
use this language when they state that their results
yield a \potential-function-based robot navigation al-
gorithm that is provably correct" [28]. If these notions
are identical, then why is \completeness" preferred in
the motion planning literature? Etymology suggests
that complete (\to make full") may be more appropri-
ate than correct (\to make straight")!

We should note that all of our de�nitions are with
respect to mathematical problems . The relationship
between mathematical models and the physical world
o�ers additional complications. For example, con-
sider the navigation algorithm that uses the Visibility
Graph. Although it is complete for the idealized math-
ematical model of the environment, this plan may per-
form extremely poorly when executed in the presence
of disturbances in the physical environment.

Although the issue of completeness is familiar in
Computational Geometry, it is often neglected in the
Robotics literature. This may be due in part to the ex-
perimental nature of much robotics research, where em-
pirical demonstrations are more common than mathe-
matical proofs. Certainly it is often di�cult to formally
characterize complex problems in robotics; in many
cases the abstractions used to simplify problems, such
as assuming zero friction, may be of little relevance to
practitioners. Yet empirical demonstrations of success
without careful examination of failures leaves the im-
pression that algorithms will work in all cases. This
can lead to unpleasant surprises on the factory oor
and hurt the credibility of future e�orts.

As with asymptotic complexity, completeness fo-
cuses on worst-case scenarios. There is a natural bias
against such \pessimism". Yet careful examination of
such cases may lead to a proof of completeness or a
counterexample, both of which are useful to practition-
ers. Completeness is also relevant to experimenters; al-
though experiments cannot demonstrate completeness,
they can be used to identify counterexamples. My hope
is that focusing on these cases will ultimately lead to
better algorithms.
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