
Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

1 of 12

A R T I F I C I A L I N T E L L I G E N C E

Deep learning can accelerate grasp-optimized
motion planning
Jeffrey Ichnowski*, Yahav Avigal, Vishal Satish, Ken Goldberg

Robots for picking in e-commerce warehouses require rapid computing of efficient and smooth robot arm
motions between varying configurations. Recent results integrate grasp analysis with arm motion planning to
compute optimal smooth arm motions; however, computation times on the order of tens of seconds dominate
motion times. Recent advances in deep learning allow neural networks to quickly compute these motions;
however, they lack the precision required to produce kinematically and dynamically feasible motions. While in-
feasible, the network-computed motions approximate the optimized results. The proposed method warm starts
the optimization process by using the approximate motions as a starting point from which the optimizing motion
planner refines to an optimized and feasible motion with few iterations. In experiments, the proposed deep learning–
based warm-started optimizing motion planner reduces compute and motion time when compared to a sampling-
based asymptotically optimal motion planner and an optimizing motion planner. When applied to grasp-optimized
motion planning, the results suggest that deep learning can reduce the computation time by two orders of mag-
nitude (300×), from 29 s to 80 ms, making it practical for e-commerce warehouse picking.

INTRODUCTION
The Coronavirus Disease 2019 pandemic greatly increased demand
for e-commerce and reduced the ability of warehouse workers to fill
orders in close proximity, driving interest in robots for order fulfill-
ment. However, despite recent advances in grasp planning [e.g.,
Mahler et al. (1)], the planning and executing of robot motion re-
main a bottleneck. To address this, in prior work, we introduced a
Grasp-Optimized Motion Planner (GOMP) (2) that computes a
time-optimized motion plan (see Fig. 1) subject to joint velocity and
acceleration limits and allows for degrees of freedom in the pick-and-
place frames (see Fig. 2). The motions that GOMP produces are fast
and smooth; however, by not taking into account the motion’s jerk
(change in acceleration), the robot arm will often rapidly accelerate
at the beginning of each motion and rapidly decelerate at the end. In
the context of continuous pick-and-place operations in a warehouse,
these high-jerk motions could result in wear on the robot’s motors
and reduce the overall service life of a robot. In this paper, we intro-
duce jerk limits and find that the resulting sequential quadratic pro-
gram (SQP) and its underlying quadratic program (QP) require
computation on the order of tens of seconds, which is not practical
for speeding up the overall pick-and-place pipeline. We then present
DJ (Deep-learning Jerk-limited)–GOMP, which uses a deep neural
network to learn trajectories that warm start computation, yielding a
reduction in computation times from 29 s to 80 ms, making it prac-
tical for industrial use.

For a given workcell environment, DJ-GOMP speeds up motion
planning for a robot and a repeated task through a three-phase pro-
cess. The first phase randomly samples tasks from the distribution
of tasks the robot is likely to encounter and generates a time- and
jerk-minimized motion plan using an SQP. The second phase trains a
deep neural network using the data from the first phase to compute
time-optimized motion plans for a given task specification (Fig. 3). The
third phase, used in pick-and-place, uses the deep network from the
second phase to generate a motion plan to warm start the SQP from

the first phase. By warm starting the SQP from the deep network’s
output, DJ-GOMP ensures that the motion plan meets the constraints
of the robot (something the network cannot guarantee) and greatly
accelerates the convergence rate of the SQP (something the SQP
cannot do without a good initial approximation).

This paper describes algorithms and training process of DJ-
GOMP. In Results, we perform experiments on a physical Universal
Robotics UR5 manipulator arm, verifying that the trajectories GOMP
generates are executable on a physical robot and result in fast and
smooth motion. This paper provides the following contributions:
(i) J-GOMP, an extension of GOMP that computes time-optimized
jerk-limited motions for pick-and-place operations; (ii) DJ-GOMP,
an extension of J-GOMP that uses deep learning of time-optimized
motion plans that empirically speeds up the computation time of the
J-GOMP optimization by two orders of magnitude (300×); (iii) compari-
son to optimally time-parameterized Probabilistic Road Maps “Star”
(PRM*) and TrajOpt motion planners in compute and motion
time suggesting that DJ-GOMP computes fast motions quickly; and
(iv) experiments in simulation and on a physical UR5 robot sug-
gesting that DJ-GOMP can be practical for reducing jerk to accept-
able limits.

RESULTS
Time-optimized motion planning
We consider the problem of automating grasping and placing mo-
tions of a manipulator arm while avoiding obstacles and minimizing
jerk and time. Minimizing motion time requires incorporating the
robot’s velocity and acceleration limits. We cast this as an optimiza-
tion problem with nonconvex constraints and compute an approx-
imation using an SQP.

To plan a robot’s motion, we compute a trajectory as a sequence
of configurations (q0, q1, …, qn), in which each configuration qi is
the complete specification of the robot’s degrees of freedom. Of the
set of all configurations C , the robot is in collision for a portion
C obs ⊂ C . The remainder C free = C\ C obs is the free space. For the
motion to be valid, each configuration must be in the free space q ∈ C free
and be within the joint limits [qmin, qmax].

Department of Electrical Engineering and Computer Sciences, University of California
at Berkeley, Berkeley, CA 94720, USA.
*Corresponding author. Email: jeffi@berkeley.edu

Copyright © 2020
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim
to original U.S.
Government Works

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

2 of 12

The motion starts with the robot’s end effector at a grasp frame
g0 ∈ SE(3) and ends at a place frame gH ∈ SE(3). Grasps for parallel-
jaw grippers have an implied degree of freedom about the axis de-
fined by the grasp contact points. Similarly, suction-cup grippers
have one about the contact normal. The implied degrees of freedom
means that the start of the motion is constrained to a set
 G 0 = { g i ∣ g i = R c () g 0 + t, ∈ [min , max] , t ∈ [t min , t max] }

where Rc(⋅) is a rotation about the free axis c, min and max bound
the angle of rotation, and tmin ∈ ℝ3 and tmax ∈ ℝ3 bound the trans-
lation. The place frame may have similarly formulated, but different
degrees of freedom based on packing requirements.

To be dynamically feasible, trajectories must also remain within
the velocity, acceleration, and jerk limits (vmax, amax, and jmax) of
the robot.

Treating : ℝ → C as a function of time and defining a function
h : T → ℝ as the duration of the trajectory, where T is the set of all
trajectories, the objective of DJ-GOMP is to compute

 argmin

 h()

 s.t. (such that) (t) ∈ [q min , q max] ∪ C free ∀ t ∈ [0, h()]

 d ─ dt ∈ [− V max , V max] ∀ t ∈ [0, h()]

 d 2 ─ dt (t) [− a max , a max] ∀ t ∈ [0, h()]

 d 3 ─ dt (t) ∈ [− j max , j max] ∀ t ∈ [0, h()]

 p((0)) ∈ G 0

 p((h())) ∈ G H

where p : C → SE(3) is the robot’s forward kinematic function to
gripper frame. In addition, should multiple trajectories satisfy the
above minimization, DJ-GOMP computes a trajectory that mini-
mizes sum-of-squared jerks over time.

Computing motion plans
We propose a multistep process for computing motion plans quick-
ly. The underlying motion planner is based on an SQP proposed in
GOMP (2), which is a time-optimizing extension of TrajOpt (3)
that incorporates a depth map for obstacle avoidance, degrees of
freedom at pick and place points, and robot dynamic limits. In
GOMP and its extensions in this work, trajectories are discretized
into a sequence of H + 1 waypoints separated by a fixed time inter-
val tstep, where tstep is a tunable parameter, and H is the computed
(time) horizon of the motion (borrowing the term from receding
horizon control methods). In this work, we extend the SQP in
GOMP to include jerk limits and minimization to create J-GOMP,
a jerk-limited motion planner. J-GOMP produces jerk-limited
motion plans but at a substantially increased compute time.

To address the slow computation, we train a deep neural net-
work to approximate J-GOMP. Because the network approximates
J-GOMP, we use J-GOMP to generate a training dataset consisting
of trajectories for random pick and place points likely to be encoun-
tered at runtime (e.g., from location in a picking bin to a location in

A Wrist-back top grasp B Left 60° C Right 60° D Wrist-front top grasp

Fig. 2. Grasp-optimized motion planning degrees of freedom. The optimized
motion planning allows for degrees of freedom to be added to the pick and or
place frames. In (A), grasp analysis produces a top-down grasp. Because the analy-
sis is based on two contact points, the motion planner allows for rotation about the
grasp contact points shown as ±60° rotations in (B) and (C). Similarly, reversing the
contact points, visible in (D) as a different arm pose, will still be valid according to
grasp analysis. DJ-GOMP computes an optimal rotation for pick and place frames
that minimizes time and jerk of the motion.

Fig. 1. Grasp-optimized motion planning in action. The proposed motion planner computes a time- and jerk-optimized motion for pick-and-place operations, using a
combination of deep learning and optimization. Time optimization makes the motions fast (sub-second). Jerk (change in acceleration) optimization avoids overshooting
and reduces wear over long term repeated operation. For a given pair of start and end robot configurations, deep learning rapidly computes an approximation of the
optimal motion that can violate motion constraints (e.g., collides with a bin, exceeds joint limits). The motion planner then feeds the approximation to an optimization
process to minimize jerk and fix up the constraint violations. By using the deep-learning-based approximation, the computation time speeds up by 300×.

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

3 of 12

a placement bin). With GPU (graphics processing unit)–based acceler-
ation, the network can compute approximate trajectories in milliseconds.
However, the network cannot guarantee that the trajectories it gener-
ates will be kinematically or dynamically feasible or avoid obstacles.

To fix the trajectories generated by the network, we propose us-
ing the network’s trajectory to warm start the SQP from J-GOMP.
The warm start allows the SQP to start from a trajectory much
closer to the final solution and thus allows it to converge to an
optimal solution quickly. Because the SQP enforces the pick, place,
kinematic, dynamic, and obstacle constraints, the resulting trajectory
is valid.

Physical experiments
We tested DJ-GOMP on a physical UR5 robot (4) fitted with a
Robotiq 2F-85 (5) parallel gripper. In the experiment setup (see Fig. 4),
the robot must move objects from one fixed bin location to another.
We set DJ-GOMP to be constrained according to the specified joint
configuration and velocity limits of the UR5. We derived an accel-
eration limit based on the UR5’s documented torque and payload
capacity, and we limited the jerk to a multiple of the computed
acceleration limit. In practice, we surmise that an operator would
define jerk limits by taking into account the desired service life of
the robot.

To generate train/test data for the deep neural network, we use
all 80 hardware threads of an NVIDIA DGX-1 to compute 100,000
optimized input and trajectory ([g 0 T g H T] T , x *) pairs, where x* is the
discretized trajectory. The J-GOMP optimizer is written in C++ and
uses Operator Splitting solver for Quadratic Program (OSQP) (6) as
the underlying QP solver. The inputs it generates consist of random
pick (t0) and place (tH) translations drawn uniformly from the pick
and place physical space. For each generated translation, we also
generate a top-down rotation angle (0 and H) uniformly drawn
from (0,). Because a parallel gripper’s grasp has an equivalent, al-
though kinematically different [see Fig. 2 (A and D)], grasp with a
180° rotation, for each translation + rotation grasp, we also add its
rotation by 180°. Thus, for each random [t 0 T t H T] T pair, we add four
grasp frames with rotation (0, H), (0 + , H), (0, H +), (0 + , H
+) and their trajectories.

We trained the deep network with the Adadelta (7) optimizer for
50 epochs after initializing the weights using a He uniform initializer
(8). The network architecture and optimization framework were
written in Python using PyTorch. All training and deep network
computations were accelerated by GPUs on NVIDIA DGX-1’s Tesla
V100 SXM2 GPU and Intel Xeon E5-2698 v4 central processing
units (CPUs).

To evaluate the ability of the deep-learning approach of DJ-
GOMP to speed up motion planning, we computed 1000 random
motion plans both without and with deep learning–based warm
start and plot the results in Fig. 5. The median compute time with-
out deep learning is 29.0 s. Using a network to estimate the optimal
time horizon, but not the trajectory, can speed up computation sig-
nificantly but at a cost of increased failure rate. Using the network
to both predict the time horizon and the warm-start trajectory re-
sults in a median with deep learning of 80 ms; when compared to
J-GOMP, this shows two orders of magnitude improvement, an
approximate 300× speedup.

To evaluate the effect on the optimality of the computed trajec-
tories, we compared the sum-of-squared jerks between trajectories
generated with the full SQP versus those generated with a warm-
started prediction with the optimal horizon. We observe that more
than 99% of the test trajectories are within 10−3 of each other, which
is an error value that is within the tolerance bounds we set for the
QP optimizer. For a small fraction (less than 1%), we observe that
the warm-started optimization and the full optimization find differ-
ent local minima, without clear benefit to either optimization.

Because the optimality of the trajectory and the failure rate is
dependent on accurately predicting the optimal time horizon of a
trajectory, we separately evaluated this prediction. We observe that
shorter values of the horizon lead inevitably to SQP failures, whereas
longer values lead to suboptimal trajectories. Because failures are
likely to be more problematic than slighty slower trajectories, we

A start

B C midway through physical experiment E end

D

Fig. 4. Physical experiment executing jerk-limited motion computed by
DJ-GOMP on a UR5. The motion starts by picking an object from the right bin
(A), moves over the divider (B to D), and ends after placing the object in the left bin
(E). Without the jerk limits, the motion takes 448 ms but results in a high jerk at the
beginning and end of the motion, which, in this case, causes the UR5 robot to over-
shoot its end frame by a few millimeters. With jerk limits, the motion takes 544 ms,
reduces wear, and does not overshoot the end frame.

A
C

B F
D E

Fig. 3. A deep neural network architecture for grasp optimized motion planning. The input is the start and goal grasp frames (A). Each “FDE” block (B) sequences a
fully connected (FC) layer (C), a dropout layer (D), and an exponential linear unit (ELU) layer (E). The output (F) is a trajectory H from the start frame to the goal frame for
each of the time steps H supported by the network. A separate network uses one-hot encoding to predict which of the output trajectories is the shortest valid trajectory.

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

4 of 12

propose a simple heuristic to predict longer horizons. When the
network predicts a horizon longer than the optimal, we observe that
the optimization of trajectories with suboptimal horizon can be
faster than that of the optimal horizon (shown in Fig. 5B). This is
likely due to the suboptimal trajectory being less constrained and
thus faster to converge. In practice, we propose that using a readily
available multicore CPU to simultaneous compute multiple SQPs
for different horizons around the estimated horizon would be a
practical way to address the failures and suboptimal trajectories.
However, if constrained to a single-core computation, using a longer
horizon may also be practical because the compute time saved may
be more than time saved by using the optimal horizon.

To evaluate the effect on failure rate, we recorded the number of
failures with both cold-started and warm-started optimization with
the optimal horizon (observing that predicting short horizon is the
other source of failures). Cold-started optimizations fail 10.7%,
whereas warm-started optimizations fail 5.7%. These failures occur
because the optimizer cannot move the trajectory into a feasible re-
gion due to the tight constraints. In experiments, the failure rate
went down with additional training data and longer network train-
ing, suggesting that further improvement is possible.

We compare compute time and motion time performance to
PRM* (9, 10) and TrajOpt (3). For PRM*, we precompute graphs of
10,000, 100,000, and 1,000,000 vertices over the workspace in front
of the robot. Because PRM* is an asymptotically optimal motion
planner, graphs with more vertices should produce shorter paths, at
the expense of longer graph search time. For TrajOpt, we configure
the optimization parameters to match that of DJ-GOMP, observing
that this improves success rate over the default. Straight-line initial-
ization in TrajOpt fails in this environment due to the bin wall
between the start and end configurations; whereas DJ-GOMP’s spe-
cialized obstacle model moves the trajectory out of collision,
TrajOpt’s obstacle model result in linearizations that do not push
the trajectory out of collision. We thus initialize TrajOpt with a tra-
jectory above the obstacles in the workspace. Because both PRM*
and TrajOpt do not directly produce time-parameterized trajecto-
ries, we use Kunz et al.’s method (11) to compute time-optimal time
parameterization. This time parameterization method first “rounds
corners” by adding smooth rounded segments to connect the piece-
wise linear motion plan from PRM* before computing the optimal
timing for each waypoint. Without the rounded corners, the robot
would have to stop between each linear segment of the motion plan
to avoid an instantaneous infinite acceleration. The radius of the
corner rounding is tunable; however, rounding corners too much
can result in a motion plan that collides with obstacles. This time pa-
rameterization also does not minimize or limit jerk and thus produces
high jerk trajectories with peaks in the range 5 × 105 to 8 × 105 rad/s3
(Fig. 6A), meaning that they should have an advantage in motion
time over jerk-limited motions (Fig. 7). As a final step, because 180°
rotated parallel jaw grasps are equivalent, we compute trajectories
for each pick and place combination and select the fastest motion.
The results for 1000 pick-place pairs are shown in Fig. 6. We ob-
serve that PRM* has consistent fast compute times but produces the
slowest trajectories. TrajOpt is slower to compute but produces
faster trajectories than PRM*. DJ-GOMP, because it directly opti-
mizes for a time-optimal path, produces the fast motions, whereas
the deep-learning horizon prediction and warm start allow it to
compute quickly despite complex constraints and result in the over-
all fastest combined compute and motion time.

To evaluate whether motion plans that DJ-GOMP generates
work on a physical robot, we have a UR5 follow trajectories that DJ-
GOMP generates. An example motion is shown in Fig. 4. The UR5
controller does not allow the robot to exceed joint limits and issues
an automated emergency stop when it does. The trajectories that
DJ-GOMP generates are constrained to the documented limits and
thus do not cause the stop. However, we have observed that, without
jerk limits, a high-jerk trajectory can cause the UR5 to overshoot its
target and bounce back. With DJ-GOMP’s jerk-limited trajecto-
ries, the UR5 empirically does not overshoot.

DISCUSSION
Experiments suggest that warm starting the J-GOMP optimizing
motion planner with an approximation from deep learning can
speed up motion planning with J-GOMP by two orders of magni-
tude, over 300×, and compute time-optimized jerk-limited trajecto-
ries with an 80-ms median compute time. The time optimization
has potential to reduce picks per hour, an important metric in ware-
house packing operations, whereas the jerk limits can reduce wear
on robots, leading to longer lifespans and reduced downtime.

0%

1%

2%

3%

4%

0 10 20 30 40 50 60 70 80 90
compute time (seconds)

distributions when
using neural network

0%
1%
2%
3%
4%
5%
6%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
compute time (seconds)

0%
5%

10%
15%
20%
25%
30%
35%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
compute time (seconds)

H from network
H from oracle

1.0

A Full optimization compute time

B Optimization with only horizon prediction compute time

C Deep-learning warm start compute time

fr
eq

ue
nc

y
(%

)
fr

eq
ue

nc
y

(%
)

fr
eq

ue
nc

y
(%

)

Fig. 5. Compute time distribution for 1000 random motion plans. In these
plots, the x axis shows total compute time in seconds for a single optimized trajec-
tory. Plot (A) extends to 90 s, whereas plots (B) and (C) extend to 1 s. The y axis
shows the distribution compute time required. The full optimization process with-
out the deep-learning prediction, shown in the histogram in (A), requires orders of
magnitude longer to compute. Using a deep network to predict the optimal time
horizon for a trajectory, but not warm-starting the trajectory (B), leads to improve-
ments in compute time, although with increased failures. Using the deep network
to compute a trajectory to warm start the optimization (C) further improves the
compute time. In (C), the plots include results for both estimated trajectory horizon
H and the exact H from the full optimization to show the effect of misprediction of
trajectory length—inexact predictions can result in a faster compute time because
the resulting trajectory is suboptimal, thus less tightly constrained. The upper limit
on the x axis is shown in red to highlight the difference in scale—plots (B) and (C)
are magnified by two orders of magnitude.

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

5 of 12

Deep network design
The design and training of the deep network that approximates the
trajectories of J-GOMP have an important impact on the performance
of the overall motion planning system. Trajectories that are closer
to the J-GOMP solution will take fewer optimizations iterations,
whereas trajectories further from the solution will take more opti-
mization iterations. In the method we propose, we use deep network
to predict both the optimal time horizon of the trajectory and the
full trajectory for any horizon. In ablation studies, we tried a policy-
style network that predicts an action to take based on the current
state and the goal state. By feeding each state back into the network,
it computes a sequence of states that form a trajectory. This network
produced less stable results and resulted in longer times to produce
an optimization. Although an 80-ms median compute time may be
sufficient for many applications, further improvement may be pos-
sible with different design.

The choice of loss function used in the training strongly influ-
ences the warm-start speed. Although a mean squared error (MSE)
loss, because it measures the difference between training data and
the network’s output, should be sufficient if reduced to 0, we pro-
pose using a loss that is a weighted combination of MSE and a loss
that encourages the network to produce dynamically feasible motions.
Because the dynamics loss is consistent with the generated trajecto-
ries, using it did not significantly affect the reported MSE test loss
but did result in trajectories that were smoother. The resulting
smoothed trajectories were closer to a consistent solution and re-
sulted in the optimizer requiring fewer SQP iterations to complete.

Training the network also benefits from a J-GOMP implementa-
tion and dataset that approaches a continuous function. Experi-
mentally, we found that discontinuities made training the network
difficult. To encourage continuity, we took the following steps: (i)
The optimization smoothly varies around obstacles by performing
a continuous collision detection based on the spline between way-
points, (ii) the cold-started optimizations starts from a determinis-

tic and smoothly varying interpolation, and (iii) using the optimal
trajectories with suboptimal horizons in the training dataset. We
also observe that for a given start-goal pair, there can be multiple
minimum time trajectories due to discretization of time. By mini-
mizing jerk as well, J-GOMP provides a consistent mechanism for
selecting a trajectory to learn.

Continuous learning
In continuous operation, a system will produce trajectories that can
be used to train the deep network. When running the experiments,

tim
e

(s
ec

on
ds

)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

PRM*104 PRM*105 PRM*106 TrajOpt DJ-GOMP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

PRM*104 PRM*105 PRM*106 TrajOpt DJ-GOMP
0
1
2
3
4
5
6
7
8

PRM*104 PRM*105 PRM*106 TrajOpt DJ-GOMP

je
rk

(r
ad

/s
3)x

10
5

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

PRM*104 PRM*105 PRM*106 TrajOpt DJ-GOMP

A Maximum jerk B Compute time

C Motion time D Compute + motion time

tim
e

(s
ec

on
ds

)

tim
e

(s
ec

on
ds

)

Fig. 6. Maximum jerk and timing comparisons for 1000 pick-place pairs computed with PRM*, TrajOpt, and DJ-GOMP. These graphs compare motion plan (A) jerk,
(B) compute time, (C) motion time, and (D) combined compute + motion time. The filled boxes spans the first through third quartile with a horizontal line at the median.
The whiskers extend from the minimum to maximum values. Paths computed by PRM* (9, 10) and TrajOpt (3) are subsequently optimally time parameterized (11). The
time parameterization does not limit jerk as DJ-GOMP does, which allows for faster but high jerk motions. Even so, because DJ-GOMP directly optimizes the path, unlike
PRM* and TrajOpt, DJ-GOMP generates the fastest motions; whereas its deep learning–based warm start allows for fast compute and motion times.

-1500
-1000

-500
0

500
1000
1500

0 0.1 0.2 0.3 0.4 0.5

je
rk

(r
ad

/s
3)

time (seconds)

-1500
-1000

-500
0

500
1000
1500

0 0.1 0.2 0.3 0.4 0.5

je
rk

(r
ad

/s
3)

time (seconds)

A Trajectory without jerk limits

B Jerk-limited trajectory

Fig. 7. Jerk limit’s effect on computed and executed motion. We plot the jerk
(y axis) of each joint in rad per cubic second over time in milliseconds (x axis) as
computed (A) without jerk limits and (B) with jerk limits. Without jerk limits, the
optimization computes trajectories with large jerks throughout the trajectory
(shown in shaded regions). With jerk limits, each joint stays within the defined limits
(the dotted lines) of the robot.

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

6 of 12

we found that more training data improved the predictions of the
network. We hypothesize that we did not reach the limit of im-
provement, and continuous operation would provide a method by
which additional training data can be generated. An additional
benefit may come from such a feedback system. The initial training
dataset that we propose is from a uniform random distribution over
two volumes—the pick bin and place bin (Fig. 4). In practice, the
distribution of trajectories is likely to be nonuniform, e.g., based on
how objects form piles in each bin. Hence, the initial training distribu-
tion will likely be out of distribution with the system during operation,
and other precomputation strategies (12) may produce a better initial
results. By leveraging the data from repeated operation, the system
should continue to gain data from which it can learn and thus pro-
duce better trajectories that will speed up the SQP computation.

Application to other robots and environments
We propose a system for speeding up motion planning and exe-
cution time and experimented on a UR5 robot in a pick-and-place
operation. The kinematic design of this robot has favorable proper-
ties in this application and motion planning algorithm. The robot
has two joints that can lift the end effector up from any configuration—
with the depth map as the obstacle, this means that there will always
be an obstacle-free trajectory, provided that there are a sufficient
number of waypoints allocated to the trajectory to make the travers-
al. In addition, because of its 6-DOF (degrees of freedom) design,
for any end-effector location, there exists eight analytic inverse ki-
nematic solutions (13), allowing for rapid computation of multiple
initial and final poses to seed the optimization process.

Application to robots with additional degrees of freedom would
not only result in more inverse kinematic solutions but also allow
the robot to have more options (in the form of different configurations)
to avoid obstacles. In these cases, changes in the initial trajectory
seeded to the optimization can result in the robot converging on a
different homotopic path. For example, with a different obstacle
environment, one seed might lead to an arm going above an obstacle,
whereas a different seed would lead an arm going to the side of an
obstacle. We hypothesize that this could be addressed in the proposed
system by having a consistent solution to seeding a trajectory—one
that results in a smooth function for the deep network to approximate.

Applications to other environments would require an additional
data generation and training step specific to the new condition. In
the experiments, we generated training and test datasets from the
same distribution. If the test dataset were to come from a different
(or held out) distribution, then the resulting covariate shift would
decrease performance. In practice, however, we would generate
training data from the new distribution.

Speeding up other optimized motion planners
The deep learning–based warm start of the optimization used by
DJ-GOMP may also help speed up other optimizing motion plan-
ners such as TrajOpt (3), Covariant Hamiltonian Optimization for
Motion Planning (CHOMP) (14), Stochastic Trajectory Optimization
for Motion Planning (STOMP) (15), and Incremental Trajectory
Optimization for Motion Planning (ITOMP) (16), ones based on
interior-point optimization (17) and gradients (18). Many of these
planners already compute solutions quickly, although with increased
constraints, more complex obstacle environments, or additional
way points in the descretization, they may slow down to the point
where they become impractical to use without something like the
deep learning–based warm start proposed in DJ-GOMP.

Integrated grasp and motion planning
In this paper, we explore speeding up the computation of jerk-limited
motions for the pick-and-place task from GOMP in which both
pick and place frames have an additional degree of freedom. The
degree of freedom comes from the four degree–of–freedom represen-
tation commonly used by grasp analysis approaches such as Dexterity
Network (Dex-Net) (1, 19–21), Grasp Quality Convolutional Neural
Network (GG-CNN) (22), Grasp Pose Detection (GPD) (23), or Fully
Convolutional GQ-CNN (FC-GQ-CNN) (24). These data-driven
methods often represent grasps using a center axis (1) or rectangle
formulation (25) in the image plane (e.g., from a depth camera),
which results in 4 DOF (a three-dimensional translation, plus a ro-
tation about the camera z axis). Although we use FC-GQ-CNN (24)
in experiments, we propose that many grasp analysis algorithms could
be incorporated into the computation and learning process. However,
on the basis of the grasp analysis software and gripper, modifications
to the network design may be necessary. For example, recent work
exploring additional degrees of freedom for grasps (26–29) and show-
ing that top-down grasps leave out many high quality grasps on many
objects (30) may require an alternate formulation of the input to
the network used for predicting the warm-start trajectory.

In future work, DJ-GOMP could be integrated with a grasp planner
to optimize among multiple grasp configurations. Whether the grasp
analysis method is from the first wave of grasping research based on
analytic algorithms with physical models of contact dynamics and
known geometry (31–34), the second wave of research based on

A Outside B Inside C At waypoints D Between waypoints

Fig. 8. Obstacle constraint linearization. The constraint linearization process
keeps the trajectory away from obstacles by adding constraints based on the
Jacobian of the configuration at each waypoint of the accepted trajectory x(k). In
this figure, the obstacle is shown from the side, the robot’s path along part of x(k) is
shown in blue, and the constraints’ normal projections into Euclidean space
are shown in red. For waypoints that are outside the obstacle (A), constraints keep
the waypoints from entering the obstacle. For waypoints that are inside the obstacle
(B), constraints push the waypoints up out of the obstacle. If the algorithm adds
constraints only at waypoints as in (C), the optimization can compute trajectories
that collide with obstacles and produce discontinuities between trajectories with
small changes to the pick or place frame. These effects are mitigated when obstacles
are inflated to account for them, but the discontinuities can lead to poor results
when training the neural network. The proposed algorithm adds linearized con-
straints to account for collision between obstacles, leading to more consistent
results shown in (D).

Fig. 9. The fast motion planning pipeline. The pipeline has three phases be-
tween input and robot execution. The first phase estimates the trajectory horizon
H* by computing a forward pass of the neural network. The second phase esti-
mates the trajectories for H* to create an initial trajectory for the SQP optimization
process. The SQP then optimizes the trajectory, ensuring that it meets all joint kine-
matic and dynamic limits so that it can successfully execute on a robot.

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

7 of 12

data-driven learning and neural networks (25, 35–41), or the recent wave
of research combining the two (1), many grasp analysis methods often
have the ability to generate multiple ranked candidate grasps. With
multiple forward passes using the DJ-GOMP network, grasp candidates
from these methods could be rapidly weighted on the basis of their
potential execution speed. This would allow the combination of grasp
analysis software and DJ-GOMP to rapidly determine which grasp
of multiple candidates leads to the fastest motion or to perform a cost-
benefit analysis—for example, trading off some reliability of the grasp
for speed of motion.

Use in other applications
We propose and experiment with an optimizing motion planning
method in the context of a repeated pick-and-place scenario, in
which the optimization is slowed down because of constraints on
dynamics, obstacle avoidance, and degrees of freedom at pick and
place points. We envision that other scenarios may also benefit from
the proposed approach, including applications in manufacturing,
assembly, painting, welding, inspection, robot-assisted surgery, con-
struction, farming, and recycling. In each of these scenarios, the
constraints in the optimization would need to adapt to the task, and
the inputs to the system would also vary accordingly.

Opportunities for future research
In future work, we will explore expanding DJ-GOMP to additional
robots performing more varied tasks that would include increased
variation of start and goal configurations and in more complex
environments. We will also explore additional deep-learning
approaches to find better approximations of the optimization pro-
cess and thus allow for faster warm starting of the final optimization
step of DJ-GOMP. For systems without access to a GPU or other
neural network accelerator, it may be fruitful to explore other routes
to compute a warm-start trajectory, e.g., different/smaller network
design, or a nearest trajectory from the training dataset (42). There
may be potential for using a deep learning–based warm start to
speed up constrained optimizations in other fields of robotics, e.g.,
grasp contact models (43), task planning (44, 45), and model
predictive control (46, 47)—potentially allowing such algorithms to
run at interactive rates and enabling new applications.

MATERIALS AND METHODS
This section describes the methods in DJ-GOMP. Underlying DJ-
GOMP is a jerk- and time-optimizing constrained motion planner
based on an SQP. Because of the complexity of solving this SQP,
computation time can far exceed the trajectory’s execution time.
DJ-GOMP uses this SQP on a random set of pick-and-place inputs
to generate training data (trajectories) to train a neural network.
During pick-and-place operation, DJ-GOMP uses the neural network
to compute an approximate trajectory for the given pick and place
frames, which it then uses to warm start the SQP.

Jerk- and time-optimized trajectory generation
To generate a jerk- and time-optimized trajectory, DJ-GOMP ex-
tends the SQP formulated in GOMP (2). The solver for this SQP,
following the method in TrajOpt (3) and summarized in Algorithm 1,
starts with a discretized estimate of the trajectory as a sequence of
H waypoints after the starting configuration, in which each way-
point represents the robot’s configuration q, velocity v, acceleration

a, and jerk j at a moment in time. The waypoints are sequentially
separated by tstep seconds. This discretization is collected into x(0),
where the superscript represents a refinement iteration. Thus

 x (0) = (x 0 (0) , x 1 (0) , … , x H (0)) , where x t
(k) =

⎡

 ⎢

⎣

 q t
(k)

 v t

(k)

 a t
(k)

 j t
(k)

⎤

 ⎥

⎦

The choice of H and tstep is application specific, although in
physical experiments, we set tstep to match (an integer multiple of)
the control frequency of the robot, and we set H such that H ⋅ tstep is
an estimate of the upper bound of the minimum trajectory time for
the workspace and task input distribution.

The initial value of x(0) seeds (or warm starts) the SQP computa-
tion. Without the approximation generated by the neural network
(e.g., for training data set generation), this trajectory can be initialized to
all zeros. In practice, the SQP can converge faster by first computing a
trajectory between inverse kinematic solutions to g0 and gH with only
the convex kinematic and dynamic constraints (described below).

In each iteration k = (0,1,2, …, m) of the SQP, DJ-GOMP linear-
izes the nonconvex constraints of obstacles and pick-and-place lo-
cations and solves a QP of the following form

 x (k+1) = argmin
x
 1 ─ 2 x T Px + p T x

 s . t. Ax ≤ b

where A defines constraints enforcing the trust region, joint limits, and
dynamics, and P is defined such that xTPx is a sum-of-squared jerks.
To enforce the linearized nonconvex constraints, DJ-GOMP adds
constrained nonnegative slack variables penalized using appropriate
coefficients in p. As DJ-GOMP iterates over the SQP, it increases
the penalty term exponentially, terminating on the iteration m at
which x(m) meets the nonconvex constraints.

Algorithm 1: Jerk-limited Motion Plan
Require: x(0) is an initial guess of the trajectory, h + 1 is the number of
 waypoints in x(0), tstep is the time between each waypoint, g0 and gH
 are the pick and place frames, shrink ∈ (0,1), grow > 1, and > 1

1: ← initial penalty multiple
2: ϵtrust ← initial trust region size

 3: k ← 0
4: P, p, A, b ← linearize x(0) as a QP
5: while < max do
6: x (k+1) ← arg min x 1 _ 2 x ⊤ Px + p ⊤ x s . t . Ax ≤ b

 /* warm start with x(k) */
7: if sufficient decrease in trajectory cost then
8: k ← k + 1 /*accept trajectory */
9: ϵtrust ← ϵtrustgrow /* grow trust region */
10: A, b ← update linearization using x(k)

11: else
12: ϵtrust ← ϵtrustshrink /* shrink trust region */
13: b ← update trust region bounds only
14: if ϵtrust < ϵmin_trust then
15: ← /* increase penalty */
16: ϵtrust ← initial trust region size
17: p ← update penalty in QP to match
18: return x(k)

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

8 of 12

To enforce joint limits and dynamic constraints, Algorithm 1
creates a matrix A and a vector b that enforce the following linear
inequalities on joint limits

 q min ≤ q t ≤ q max
 − v max ≤ v t ≤ v max
 − a max ≤ a t ≤ a max
 − j max ≤ j t ≤ j max

and the following equalities that enforce dynamic constraints be-
tween variables

 q t+1 = q t + t step v t + 1 ─ 2 t step 2 a t + 1 ─ 6 t step 3 j t

 v t + 1 = v t + t step a t + 1 ─ 2 t step 2 j t
 a t+1 = a t + t step j t

In addition, Algorithm 1 linearizes nonconvex constraints by
adding slack variables to implement L1 penalties. Thus, for a non-
convex constraint gj(x) ≤ c, the algorithm adds the linearization ̄ g j (x)
as a constraint in the form

 ̄ g j (x) − y j + + y j − ≤ c

where is the penalty, and the slack variables are constrained such
that y j + ≥ 0 and y j − ≥ 0 .

In the QP, obstacle avoidance constraints are linearized on the
basis of the waypoints of the current iteration’s trajectory (Algorithm 2).
To compute these constraints, the algorithm evaluates the spline

 q spline (s; t) = q t + s v t + 1 ─ 2 s 2 a t + 1 ─ 6 s 3 j t

between each pair of waypoints (xt, xt + 1) against a depth map of
obstacles to find the time s ∈ [0, tstep) and corresponding configura-
tion ̂ q t that minimizes signed distance separation from any obstacle.
In this evaluation, a negative signed distance means that the config-
uration is in collision. The algorithm then uses this ̂ q t to computes
a separating hyperplane in the form nTq + d = 0. The hyperplane is
either the top plane of the obstacle it is penetrating or the plane that
separates ̂ q t from the nearest obstacle (see Fig. 8). By selecting the
top plane of the penetrated obstacle, this pushes the trajectory above
the obstacle, which is a specialization of TrajOpt’s more general ob-
stacle avoidance approach that is useful in bin picking. By selecting
the hyperplane of the nearest obstacle, the algorithm keeps the tra-
jectory from entering the obstacle. The linearize constraint for this
point is

 n T ̂ J t
(k)

 ̂ x t
(k+1) ≥ − d − n T p(̂ x t

(k)) + n T ̂ J t
(k)

 ̂ x t
(k)

where ̂ J t is the Jacobian of the robot’s position at ̂ q t . Because ̂ q t and
 ̂ J t are at an interpolated state between optimization variables at xt
and xt + 1, linearizing this constraint requires computing the chain
rule for the Jacobian

 ̂ J t = J p (̂ q t) J q (s)

where J p (̂ q t) is the Jacobian of the position at configuration qt, and
Jq(s) is the Jacobian of the configuration on the spline at s

 J q (s) =

⎡

 ⎢

⎣

∂ p

 ─ ∂ q t

∂ p
 ─ ∂ q t+1

∂ p

 ─ ∂ v t

∂ p

 ─ ∂ v t+1

⎤

 ⎥

⎦

T

 =

⎡

 ⎢

⎣

− 3 s
2 ─

 t 2
 + 2 s

3 ─
 t 3

 + 1

3 s

2 ─
 t 2

 − 2 s
3 ─

 t 3

− 2 s
2 ─ t + s

3 ─
 t 3

 + s

 s
3 ─

 t 2
 − s

2 ─ t

⎤

 ⎥

⎦

T

We observe that linearization at each waypoint will safely avoid
obstacles with a sufficient buffer around obstacles (e.g., via a Minkowski
difference with obstacles); however, slight variations in pick or place
frames can shift the alignment of waypoints to obstacles. This shift
of alignment (see Fig. 8C) can lead to solutions that vary dispropor-
tionately to small changes in input. Although this may be acceptable
in operation, it can lead to data that can be difficult for a neural
network to learn.

Algorithm 2: Linearize Obstacle-Avoidance Constraint
1: for t ∈ [0, H) do
2: (nmin, dmin) ← linearize obstacle nearest to p(qt)
3: q min ← q t
4: for all s ∈ [0, tstep) do /* line search s to desired resolution */
5: q s ← q t + s v t + 1 ─ 2 s 2 a t + 1 ─ 6 s 3 j t
6: (ns, ds)← linearize obstacle nearest to p(qs)
7: if n s

⊤ p(q s) + d s < n min ⊤ p(q min) + d min then
 /* compare signed distance */

8: (n min , d min , q min) ← (n s , d s , q s)
9: Jq ← Jacobian of qs
10: Jp ← Jacobian of position at qmin

11: ̂ J t ← J p J q
12: b t ← − d min − n min ⊤ p(q min) + n min ⊤ ̂ J t x t − μ y t

+
 /* lower bound with slack y t

+ */
13: Add (n min ⊤ ̂ J t x t ≥ b t) and (y t

+ ≥ 0) to set of linear
 constraints in QP

As with GOMP, DJ-GOMP allows degrees of freedom in rota-
tion and translation to be added to start and goal grasp frames.
Adding this degree of freedom allows DJ-GOMP to take a potential-
ly shorter path when an exact pose of the end effector is unneces-
sary. For example, a pick point with a parallel-jaw gripper can rotate
about the axis defined by antipodal contact points (see Fig. 2), and
the pick point with a suction gripper can rotate about the normal of
its contact plane. Similarly, a task may allow for a place point any-
where within a bounded box. The degrees of freedom about the pick
point can be optionally added as constraints that are linear-
ized as

 w min ≤ J 0 (k) q 0 (k+1) − (g 0 − p(q 0 (k))) + J 0 (k) q 0 (k) ≤ w min

where q 0 (k) and J 0 (k) are the configuration and Jacobian of the first
waypoint in the accepted trajectory, q 0 (k+1) is one of variables the QP
is minimizing, and wmin ≤ wmax defines the twist allowed about the
pick point. Applying a similar set of constraints to gH allows degrees
of freedom in the place frame as well.

The SQP establishes trust regions to constrain the optimized tra-
jectory to be within a box with extents defined by a shrinking trust
region size. Because convex constraints on dynamics enforce the

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

9 of 12

relationship between configuration, velocity, and acceleration of each
waypoint, we observe that trust regions only need to be defined as
box bounds around one of the three for each waypoint. In experi-
ments, we established trust regions on configurations.

Algorithm 3: Time-optimal Motion Plan
Require: g0 and gH are the start and end frames,
 > 1 is the search bisection ratio

1: Hupper ← fixed or estimated upper limit of maximum time
2: H lower ← 3
3: vupper ← ∞ /* constraint violation */
4: while vupper> tolerance do /* find upper limit */
5: (xupper, vupper) ← call Alg. 1 with cold-start trajectory for

 Hupper
6: H upper ← max(H upper + 1, ⌈ H upper ⌉)
7: while Hlower < Hupper do /* search for shortest H */
8: H min ← H lower + ⌊(H upper − H lower) / ⌋
9: (xmid, vmid) ← call Alg. 1 with warm-start trajectory xupper

interpolated to Hmid
10: if vmid≤ tolerance then
11: (H upper , x upper , v upper) ← (H mid , x mid , v mid)
12: else
13: H lower ← H mid + 1
14: return xupper

To find the minimum time-time trajectory, J-GOMP searches
for the shortest jerk-minimized trajectory that solves all constraints.
This search, shown in Algorithm 3, starts with a guess of H and then
performs an exponential search for the upper bound, followed by a
binary search for the shortest H by repeatedly performing the SQP
of Algorithm 1. The binary search warm starts each SQP with an
interpolation of the trajectory of the current upper bound of H. The
search ends when the upper and lower bounds of H are the same.

Deep learning of trajectories
To speed up motion planning, we add a deep neural network to the
pipeline. This neural network treats the trajectory optimization
process as a function f to approximate

 f : SE(3) × SE(3) → ℝ H * ×n×4

where the arguments to the function are the pick and place frames,
and the output is a discretized trajectory of variable length H* way-
points, each of which has a configuration, velocity, acceleration,
and jerk for all n joints of the robot. We assume that the neural
network ̃ f can only approximate f, thus ̃ f (·) = f (⋅) + E() for some
unknown error distribution E(). Hence, the output of ̃ f may not be dy-
namically or kinematically feasible. To address this potential issue, we
use the network’s output to warm start a final pass through the SQP. This
process can be thought of as polishing the output of the neural network
approximation to overcome any errors in the network’s output.

In this section, we describe a proposed neural network architec-
ture, its loss function, training and testing dataset generation, and
the training process. Although we posit that a more general approx-
imation could include the amount of pick and place degrees of free-
dom as inputs, for brevity, we assume that f and its neural network
approximation are parameterized by a preset amount of pick and
place degrees of freedom. In practice, it may also be appropriate to
train multiple neural networks for different parameterizations of f.

Architecture
The deep neural network architecture we propose is depicted in
Fig. 3. It consists of an input layer connected through four fully con-
nected blocks to multiple output blocks. The input layer takes in the
concatenated grasp frames [g 0 T g H T] T . Because the optimal trajecto-
ry length H* can vary, the network has multiple output heads for
each of the possible values for H*. To select which of the outputs to
use, we use a separate classification network with two fully connect-
ed layers with one-hot encoding trained using a cross-entropy loss.

We refer to the horizon classification and multiple-output net-
work as a HYDRA (Horizon Yielding Distillation through Retained
Activations) network. The network yields both an optimal horizon
length and the trajectory for that horizon. To train this network
(detailed below), the trajectory output layers’ activation values for
horizons not in the training sample are retained using a zero gradi-
ent so as to weight the contribution of the layers during backprop to
the input layers.

In experiments, a neural network with a single output head was
unable to produce a consistent result for predicting varied length
horizons. We conjecture that the discontinuity between trajectories
of different horizon lengths made it difficult to learn. In contrast,
we found that a network was able to accurately learn a function for
a single horizon length but was computationally and space ineffi-
cient, because each network should be able to share information
about the function between the horizons. This led to the proposed
design in which a single network with multiple output heads shares
weights through multiple shared input layers.
Dataset generation
We propose generating a training dataset by randomly sampling
start and end pairs from the likely distribution of tasks. For exam-
ple, in a warehouse pick-and-place operation, the pick frames will
be constrained to a volume defined by the picking bin, and the place
frames will be constrained to a volume defined by the placement or
packing bin. For each random input, we generate optimized trajec-
tories for all time horizons from Hmax to the optimal H*. Although
this process generates more trajectories than necessary, generating
each trajectory is efficient because the optimization for a trajectory
of size H warm starts from the trajectory of size H + 1. Overall, this
process is efficient and, with parallelization, can quickly generate a
large training dataset.

This process can also help detect whether the analysis of the
maximum trajectory duration was incorrect. If all trajectories are
significantly shorter than Hmax, then one may reduce the number of
output heads. If any trajectory exceeds Hmax, then the number of
output heads can be increased.

We also note that in the case where the initial training data do
not match the operational distribution of inputs, the result may be
that the neural network produces suboptimal motions that are sub-
stantially, kinematically, and dynamically infeasible. In this case,
the subsequent pass through the optimization (see “Fast pipeline for
trajectory generation” section) will fix these errors, although with a
longer computation time. We propose, in a manner similar to DAgger
(48), that trajectories from operation can be continually added to
the training dataset for subsequent training or refinement of the
neural network.
Training
To train the network in a way that encourages matching the refer-
ence trajectory while keeping the output trajectory kinematically and
dynamically feasible, we propose a multipart loss function ℒ. This

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

10 of 12

loss function includes a weighted sum of MSE loss on the trajectory
 ℒ T , a boundary loss ℒB, which enforces the correct start and end
positions, and a dynamics loss ℒdyn that enforces the dynamic feasibility
of the trajectory. The MSE loss is the mean of the sum of squared
differences of the two vector arguments: ℒ MSE (̃ a , a 

¯
 ) = 1 _ n i=1 n (̃ a i − a 

¯
  i) 2 .

The dynamics loss attempts to mimic the convex constraints of the
SQP. Given the predicted trajectories ̃ X = (̃ x H min , … , ̃ x H max) , where ̃ x h =
(̃ q , ̃ v , ̃ a , ̃ j) t=0 h and the ground-truth trajectories from dataset genera-
tion X ¯ = (x ¯  H * , … , x ¯  H max) , the loss functions are

 ℒ T = q ℒ MSE (̃ q , q 
¯

 ) + v ℒ MSE (̃ v , v 
¯

 ) + a ℒ MSE (̃ , a 
¯

 ) + j ℒ MSE (̃ j , j 
¯
 )

 ℒ B = ℒ MSE (̃ q 0 , q 
¯

  0) + ℒ MSE (̃ q H , q 
¯

  H)

 ℒ dyn = 1 ─ h
t=0

h−1

 ‖ ̃ q t + t step ̃ v t + 1 ─ 2 t step 2 ̃ a t + 1 ─ 6 t step 3 ̃ j t − ̃ q t+1 ‖
2

 + 1 ─ h
t=0

h−1

 ‖ ̃ v t + t step ̃ a t + 1 ─ 2 t step 2 ̃ j t − ̃ v t+1 ‖
2

 + 1 ─ h
t=0

h−1

 ‖ ̃ a t + t step ̃ j t − ̃ a t+1 ‖ 2

 + 1 ─ h
t=0

h−1

 ‖ 1 ─ t step (j 
¯
  t+1 − j 

¯
  t) − 1 ─ t step (̃ j t+1 − ̃ j t) ‖

2

 ℒ h = T ℒ T
h + B ℒ B h + dyn ℒ dyn h

where values of q = 10, v = 1, a = 1, j = 1, B = 4 × 103, and dyn = 1
were chosen empirically. This loss is combined into a single loss for
the entire network by summing the losses of all horizons while mul-
tiplying by an indicator function for the horizons that are valid

 ℒ =
h= H min

 H max

 ℒ h 𝟙 [H ¯ * , H max] (h)

Because the ground-truth trajectories for horizons shorter than
H* are not defined, we must ensure that some finite data are present
so that the multiplication of an indicator value of 0 results in 0 (and
not NaN). Multiplying by indicator function in this way results in a
zero gradient for the part of the network that is not included in the
trajectory data.

During training, we observed that the network would often ex-
hibit behavior of coadaptation in which it would learn either ℒ T or
ℒdyn but not both. This showed up as a test loss for one going to
small values, whereas the other remained high. To address this
problem, we introduced dropout layers (49) with dropout probabil-
ity pdrop = 0.5 between each fully connected layer, shown in Fig. 3.
We annealed (50) pdrop to 0 over the course of the training to reduce
the loss further.
Fast pipeline for trajectory generation
The end goal of this proposed motion planning pipeline is to gener-
ate feasible, time-optimized trajectories quickly. The SQP computes
feasible, time-optimized trajectories but is slow when starting from
scratch. The HYDRA neural network computes trajectories quickly
(e.g., the forward pass on the network in the results section requires
∼1 to compute) but without guarantees on correctness. In this sec-
tion, we propose combining the properties of the SQP and HYDRA

into a pipeline (see Fig. 9) to get fast computation of correct trajectories
by using a forward pass on the neural network to warm start the SQP.

The first step in the pipeline is to compute ̃ H * , an estimate of the
optimal time horizon H*. This requires a single forward pass
through the one-hot classification network. Because predicting
horizons shorter than H* result in an infeasible SQP, it can be ben-
eficial to either compute multiple SQPs around the predicted hori-
zon or increase the horizon if the difference in the one-hot values
for ̃ H * and ̃ H * + 1 is within a threshold.

The second step in the pipeline is to compute ̃ x (0) , an estimate of
the time-optimal trajectory for ̃ H * using a forward pass through the
HYDRA network.

The final step is to compute the trajectory using ̃ x (0) to warm
start the SQP. In this step, because the warm-start trajectory is close
to the final trajectory and generating a smooth training dataset is
not a requirement, we can speed up the SQP process by relaxing the
termination conditions to the tolerances of the robot and task, e.g.,
terminating when the pick point (and other constraints) is within 10−3 m
of the target frame, instead of the 10−6 m used in dataset generation.

We observe that symmetry in grippers, such as found in parallel
and multifinger grippers, means that multiple top-down grasps can
result in the same contact points [e.g., see Fig. 2 (A and D)]. In this
setting, we can use ̃ f H (⋅) to estimate optimal horizons for all the
grasp configurations and quickly select the one with the lowest
horizon. Experimentally, we find that breaking ties for optimal
horizons using the associated one-hot values leads to faster trajectory
optimization compute times.

Experimental hardware setup
The experimental workspace consists of two bins position in front
of a UR5 robotic arm fitted with a Robotiq 2F-85 parallel-jaw grip-
per. DJ-GOMP’s network is trained on inputs in which the gripper
picks from the bin in front of it and places in the bin to its right
while avoiding the bin wall between the pick and place points. The
pick frame allows a degree of freedom in rotation about the grasp
axis on the pick point and a degree in left-right and forward-back
translation (but not up-down).

Experimental procedure
We generate uniform random pick and place points from box vol-
umes bounded by their respective bins and with random top-down
rotation of 0° to 180°. For each pick-place pair, we compute a
J-GOMP trajectory to all four combinations of their symmetric
grasp points. The resulting dataset consists of 100,000 (input, tra-
jectory) pairs × 4 for the symmetric grasps. With this dataset, we
train the neural network. In experiments, we use a different set of
1000 random inputs from the same distribution to compare the
time to compute an optimized trajectory with and without warm
start. We run a subset of these results on the physical robot to spot
check that the generated trajectories will run on the UR5.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/5/48/eabd7710/DC1
Movie S1. Example of motions computed by grasp-optimized motion planning with a
deep-learning warm start.

REFERENCES AND NOTES
 1. J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, K. Goldberg, Learning

ambidextrous robot grasping policies. Sci. Robot. 4, eaau4984 (2019).

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/cgi/content/full/5/48/eabd7710/DC1
http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

11 of 12

 2. J. Ichnowski, M. Danielczuk, J. Xu, V. Satish, K. Goldberg, “GOMP: Grasp-optimized motion
planning for bin picking,” in 2020 International Conference on Robotics and Automation
(ICRA) (IEEE, 2020).

 3. J. Schulman, A. Lee, I. Awwal, H. Bradlow, P. Abbeel, Finding locally optimal, collision-free
trajectories with sequential convex optimization. Robot. Sci. Syst. 9, 1–10 (2013).

 4. Universal Robotics, UR5 Collaborative Robot Arm, https://web.archive.org/
web/20190815054522/https://www.universal-robots.com/products/ur5-robot/
[accessed 15 August 2019].

 5. Robotiq, 2F-85 and 2F-140 Grippers, https://web.archive.org/web/20190519030456/
https://robotiq.com/products/2f85-140-adaptive-robot-gripper [accessed 19 May 2019].

 6. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, S. Boyd, OSQP: An operator splitting solver
for quadratic programs. Math. Prog. Comput. 12, 637–672 (2020).

 7. M. D. Zeiler, ADADELTA: An adaptive learning rate method. CoRR 1212.5701 , (2012).
 8. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification, in Proceedings of the IEEE International
Conference on Computer Vision (Santiago, Chile, 2015), pp. 1026–1034.

 9. L. E. Kavraki, P. Svestka, J.-C. Latombe, M. Overmars, Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12,
566–580 (1996).

 10. S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning.
Int. J. Robot. Res. 30, 846–894 (2011).

 11. T. Kunz, M. Stilman, Time-optimal trajectory generation for path following with bounded
acceleration and velocity, in Proceedings of the 2012 Robotics: Science and Systems VIII
(RSS) (2012).

 12. W. Merkt, V. Ivan, S. Vijayakumar, Leveraging precomputation with problem encoding for
warm-starting trajectory optimization in complex environments, in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2018), pp. 5877–5884.

 13. K. P. Hawkins, Analytic inverse kinematics for the universal robots UR-5/UR-10 arms,
Technical Report (Georgia Institute of Technology, 2013).

 14. N. Ratliff, M. Zucker, J. A. Bagnell, S. Srinivasa, CHOMP: Gradient optimization techniques
for efficient motion planning, in 2009 IEEE International Conference on Robotics and
Automation (IEEE, 2009), pp. 489–494.

 15. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, S. Schaal, STOMP: Stochastic trajectory
optimization for motion planning, in 2011 IEEE International Conference on Robotics and
Automation (IEEE, 2011), pp. 4569–4574.

 16. C. Park, J. Pan, D. Manocha, ITOMP: Incremental trajectory optimization for real-time
replanning in dynamic environments, in Twenty-Second International Conference on
Automated Planning and Scheduling (AAAI Press, 2012).

 17. A. Kuntz, C. Bowen, R. Alterovitz, Fast anytime motion planning in point clouds by
interleaving sampling and interior point optimization, in Robotics Research (Springer,
Cham, 2020), pp. 929–945.

 18. M. Campana, F. Lamiraux, J.-P. Laumond, A gradient-based path optimization method
for motion planning. Adv. Robot. 30, 1126–1144 (2016).

 19. J. Mahler,F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff, T. Kröger,
J. Kuffner, K. Goldberg, Dex-Net 1.0: A cloud-based network of 3D objects for robust
grasp planning using a multi-armed bandit model with correlated rewards, in
Proceedings of IEEE International Conference in Robotics and Automation (ICRA) (IEEE,
Stockholm, Sweden, 2016), pp. 1957–1964.

 20. J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, K. Goldberg, Dex-net 2.0:
Deep learning to plan robust grasps with synthetic point clouds and analytic grasp
metrics. Robot. Sci. Syst. 1703.09312v3 , (2017).

 21. J. Mahler, K. Goldberg, Learning deep policies for robot bin picking by simulating robust
grasping sequences, in Proceeding of the 1st Annual Conference on Robot Learning (CoRL)
(2017), pp. 515–524.

 22. D. Morrison, P. Corke, J. Leitner, Learning robust, real-time, reactive robotic grasping. Int.
J. Robot. Res. 39, 183–201 (2019).

 23. A. ten Pas, M. Gualtieri, K. Saenko, R. Platt, Grasp pose detection in point clouds. Int.
J. Robot. Res. 36, 1455–1473 (2017).

 24. V. Satish, J. Mahler, K. Goldberg, On-policy dataset synthesis for learning robot grasping
policies using fully convolutional deep networks. IEEE Robot. Autom. Lett. 4, 1357–1364
(2019).

 25. I. Lenz, H. Lee, A. Saxena, Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34,
705–724 (2015).

 26. A. Mousavian, C. Eppner, D. Fox, 6-DOF GraspNet: Variational grasp generation for object
manipulation, in Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV) (2019), pp. 2901–2910.

 27. A. Murali, A. Mousavian, C. Eppner, C. Paxton, D. Fox, 6-DOF grasping for target-driven
object manipulation in clutter (2019); arXiv:1912.03628 [cs.RO] (8 December 2019).

 28. X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta, J. Davidson, H. Lee, Learning
6-DOF grasping interaction via deep geometry-aware 3D representations, in Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2018),
pp. 1–9.

 29. M. Liu, Z. Pan, K. Xu, K. Ganguly, D. Manocha, Generating grasp poses for a high-DOF
gripper using neural networks, in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2019).

 30. C. Eppner, A. Mousavian, D. Fox, A billion ways to grasp: An evaluation of grasp sampling
schemes on a dense, physics-based grasp data set, in International Symposium of Robotics
Research (ISRR) (2019).

 31. K. Goldberg, MIT RoboSeminar - The New Wave in Robot Grasping (2019); https://youtu.be/
ATDrSWZXuwk.

 32. R. M. Murray, Z. Li, S. S. Sastry, S. S. Sastry, A Mathematical Introduction to Robotic
Manipulation (CRC press, 1994).

 33. D. Prattichizzo, J. C. Trinkle, Springer Handbook of Robotics (Springer, 2016),
pp. 955–988.

 34. E. Rimon, J. Burdick, The Mechanics of Robot Grasping (Cambridge University Press, 2019).
 35. E. Johns, S. Leutenegger, A. J. Davison, Deep learning a grasp function for grasping under

gripper pose uncertainty. Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE, 2016), pp. 4461–4468.

 36. U. Viereck, A. ten Pas, K. Saenko, R. Platt, Learning a visuomotor controller for real world
robotic grasping using simulated depth images, in Proceedings of the 1st Conference on
Robot Learning (CoRL) (2017).

 37. D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, S. Levine. Scalable deep reinforcement learning for
vision-based robotic manipulation, in Proceedings fo the 2nd Conference on Robot
Learning (CoRL) (2018), pp. 651–673.

 38. L. Pinto, A. Gupta, Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours, in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA) (IEEE, 2016), pp. 3406–3413.

 39. S. Levine, P. Pastor, A. Krizhevsky, D. Quillen, Learning hand-eye coordination for robotic
grasping with large-scale data collection, in International Symposium on Experimental
Robotics (ISER) (Springer, 2016), pp. 173–184.

 40. K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz,
P. Pastor, K. Konolige, S. Levine, V. Vanhoucke, Using simulation and domain adaptation
to improve efficiency of deep robotic grasping, in Proceedings of the IEEE
InternationalConference on Robotics and Automation (ICRA) (IEEE, 2018), pp. 4243–4250.

 41. D. Kappler, J. Bohg, S. Schaal, Leveraging big data for grasp planning, in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015),
pp. 4304–4311.

 42. T. S. Lembono, A. Paolillo, E. Pignat, S. Calinon, Memory of motion for warm-starting
trajectory optimization. IEEE Robot. Autom. Lett. 5, 2594–2601 (2020).

 43. T. Watanabe, T. Yoshikawa, Grasping optimization using a required external force set.
IEEE Trans. Autom. Sci. Eng. 4, 52–68 (2007).

 44. M. Toussaint, Logic-geometric programming: An optimization-based approach to
combined task and motion planning, in Proceedings of the 24th International Conference
on Artificial Intelligence (IJCAI) (2015), pp. 1930–1936.

 45. D. Hadfield-Menell, C. Lin, R. Chitnis, S. Russell, P. Abbeel, Sequential quadratic
programming for task plan optimization, in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE, 2016), pp. 5040–5047.

 46. Y. Wang, S. Boyd, Fast model predictive control using online optimization. IFAC Proc. Vol.
41, 6974–6979 (2008).

 47. N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, O. Stasse, Using a memory of motion
to efficiently warm-start a nonlinear predictive controller, in 2018 Proceedings of
theIEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2018),
pp. 2986–2993.

 48. S. Ross, G. Gordon, D. Bagnell, A reduction of imitation learning and structured prediction
to no-regret online learning, in Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (2011), pp. 627–635.

 49. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

 50. S. J. Rennie, V. Goel, S. Thomas, Annealed dropout training of deep networks, in 2014 IEEE
Spoken Language Technology Workshop (SLT) (IEEE, 2014), pp. 159–164.

Acknowledgements: This research was performed at the AUTOLAB at UC Berkeley in affiliation
with the Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent
Secure Execution (RISE) Lab, and the CITRIS “People and Robots” (CPAR) Initiative. We thank our
colleagues who provided helpful feedback and suggestions, particularly A. Balakrishna and
B. Thananjeyan. Funding: We were also supported by the Scalable Collaborative Human-Robot
Learning (SCHooL) Project, a NSF National Robotics Initiative Award 1734633, and in part by
donations from Google and Toyota Research Institute. Author contributions: J.I. devised the
method and neural network design, designed and ran the experiments, and wrote the
manuscript. Y.A. designed and experimented with neural network data generation and training
and edited the manuscript. V.S. designed and implemented the neural network training and
edited the manuscript. K.G. supervised the project, advised the design and experiments, and

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

https://web.archive.org/web/20190815054522/https://www.universal-robots.com/products/ur5-robot/
https://web.archive.org/web/20190815054522/https://www.universal-robots.com/products/ur5-robot/
https://web.archive.org/web/20190519030456/https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://web.archive.org/web/20190519030456/https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://arxiv.org/abs/1912.03628
https://youtu.be/ATDrSWZXuwk
https://youtu.be/ATDrSWZXuwk
http://robotics.sciencemag.org/

Ichnowski et al., Sci. Robot. 5, eabd7710 (2020) 18 November 2020

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

12 of 12

edited the manuscript. Competing interests: J.I., Y.A., V.S., and K.G. are co-inventors on a patent
application related to this work. Ambidextrous Robotics, a startup company commercializing
algorithms for robot grasping, has no financial interest and played no role in the work
presented in this paper: V.S. has worked there as a summer intern, and K.G. is part-time Chief
Scientist there. Data and materials availability: All data needed to evaluate the conclusions in
this paper are present in the paper. This article solely reflects the opinions and conclusions of
its authors and does not reflect the views of the sponsors or their associated entities.

Submitted 12 July 2020
Accepted 15 October 2020
Published 18 November 2020
10.1126/scirobotics.abd7710

Citation: J. Ichnowski, Y. Avigal, V. Satish, K. Goldberg, Deep learning can accelerate grasp-
optimized motion planning. Sci. Robot. 5, eabd7710 (2020).

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/

Deep learning can accelerate grasp-optimized motion planning
Jeffrey Ichnowski, Yahav Avigal, Vishal Satish and Ken Goldberg

DOI: 10.1126/scirobotics.abd7710
, eabd7710.5Sci. Robotics

ARTICLE TOOLS http://robotics.sciencemag.org/content/5/48/eabd7710

MATERIALS
SUPPLEMENTARY http://robotics.sciencemag.org/content/suppl/2020/11/16/5.48.eabd7710.DC1

CONTENT
RELATED

http://robotics.sciencemag.org/content/robotics/4/26/eaaw3520.full
http://robotics.sciencemag.org/content/robotics/4/26/eaao4900.full
http://robotics.sciencemag.org/content/robotics/4/26/eaau4984.full

REFERENCES

http://robotics.sciencemag.org/content/5/48/eabd7710#BIBL
This article cites 14 articles, 0 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

 is a registered trademark of AAAS.Science RoboticsNew York Avenue NW, Washington, DC 20005. The title
(ISSN 2470-9476) is published by the American Association for the Advancement of Science, 1200Science Robotics

of Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement

 by guest on D
ecem

ber 27, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

http://robotics.sciencemag.org/content/5/48/eabd7710
http://robotics.sciencemag.org/content/suppl/2020/11/16/5.48.eabd7710.DC1
http://robotics.sciencemag.org/content/robotics/4/26/eaau4984.full
http://robotics.sciencemag.org/content/robotics/4/26/eaao4900.full
http://robotics.sciencemag.org/content/robotics/4/26/eaaw3520.full
http://robotics.sciencemag.org/content/5/48/eabd7710#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://robotics.sciencemag.org/

