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Abstract—Laparoscopic robots such as the da Vinci Research
Kit encounter joint limits and singularities during procedures,
leading to errors and prolonged operating times. We propose the
Circle Suture Placement Problem to optimize the location and
direction of four evenly-spaced stay sutures on surgical mesh for
robot-assisted hernia surgery. We present an algorithm for this
problem that runs in 0.4 seconds on a desktop equipped with
commodity hardware. Simulated results integrating data from
expert surgeon demonstrations suggest that optimizing over both
suture position and direction increases dexterity reward by 11%-
57% over baseline algorithms that optimize over either suture
position or direction only.

I. INTRODUCTION

Limited autonomy has been studied for robotic surgical
procedures and has the potential to reduce surgeon fatigue,
improve precision, and facilitate long-range tele-operation [1–6].
We investigate suture placement planning to avoid joint limits
and singularities for robot-assisted hernia surgery on the da
Vinci Research Kit (dVRK) [7].

Robot-assisted hernia surgery, in which a surgical mesh is
placed over an abdominal wall defect using a robot, is in-
creasingly common and particularly challenging to perform [8].
The success of the repair depends on the mesh being placed
tightly enough to restrain the protrusion but loosely enough
to ensure healing. The challenging aspect of the procedure is
using an articulated robotic wrist, without haptic feedback, to
perform a number of precision suturing motions: a set of "stay
sutures" are placed to ensure the mesh remains flat and then a
running suture to place the mesh. We assume stay sutures are
performed on a circle centered on the protrusion in a direction
tangent to its boundary. Suturing motions constrained by joint
limits and singularities can result in errors and are difficult
to predict by a human or semi-autonomous controller before
execution of a suture. This limits the ability of the robot to
avoid these configurations during needle insertion, which can
prevent the needle from following the desired trajectory. In this
paper, we explore how the positions and directions of sutures
can be optimally planned to avoid areas of the configuration
space that are close to joint limits and singularities.

Prior work on autonomous suturing uses self-righting needle
fixtures to maintain a consistent and known needle pose
during autonomous needle insertion, so we assume the pose

Authors are affiliated with:
1AUTOLAB at UC Berkeley; @berkeley.edu
2UC San Francisco East Bay; @ucsf.edu
3University of Chicago; @cs.chicago.edu
{bthananjeyan, ajay.tanwani, jji, danyal.fer,
vatsal.patel, goldberg}

978-1-5386-7825-1/19/$31.00 ©2019 IEEE

Figure 1: The Circle Suture Plan Optimizer outputs position and
orientation for suture throws on the boundary of a given circle with
fixed radius centered around the herniated tissue with respect to a
dexterity reward defined in Section III-D3 that penalizes motions
that are close to joint limits and singularities. The suturing arm is
mounted below and to the left of the tissue phantom. We display
the optimal directions for evenly-spaced sutures with different initial
suture locations and observe that the direction varies in different
locations on the phantom. The bottom right image depicts the sequence
of sutures that maximizes a weighted combination of joint margin
and manipulability rewards by optimizing both suture positions and
directions.

of the needle relative to the gripper is fixed [1, 5]. Simulated
experiments suggest that optimizing over suture position and
direction enables the robot to avoid motions constrained by
joint limits and singularities.

In data collected from an expert surgeon on training tissue
phantoms obtained from Intuitive Surgical, we observe that the
robot encounters variation in manipulability and configurations
near joint singularities during placement of the sutures, resulting
in unpredictable motions and errors during teleoperation. A
dataset containing kinematic data for 16 physically-performed
sutures is used to estimate a reward function for sutures
that avoid joint singularities. We compare the ability of an
algorithm that optimizes both position and direction of evenly-
spaced sutures to avoid joint limits and singularities to baseline
alternatives that optimize either position or direction only in
simulated experiments. Results suggest that optimizing both
the position and direction of evenly spaced sutures perform



better than optimizing for position or direction alone.
This paper makes three contributions:

1) Proposes the Circle Suture Placement Problem to avoid
low-dexterity configurations during robot-assisted hernia
repair.

2) Presents an algorithm for the Circle Suture Placement
Problem that samples evenly over the set of feasible
sequences of sutures. A Python implementation of the
algorithm takes 0.4 seconds to run on an Ubuntu PC.

3) Evaluates the algorithm on a simulated setup against
baselines that picks random evenly-spaced sutures and
baselines that consider sutures in only one direction. The
algorithm achieves a dexterity reward 11−57% greater
than baselines.

II. RELATED WORK

A. Autonomy in Robotic Surgery and Telesurgery

Robot-assisted surgical platforms improve the field of view
and maneuverability for surgeons completing laparoscopic
hernia repair. Shraga et al. examine the advancements of this
relatively new technique for hernia repair [9]. Bosi et al. present
the technical details for and evaluate the efficacy of robot-
assisted single site bilateral hernia repair using continuous
suture [10]. These works do not consider the improvements in
dexterity and ergonomics for surgeons during robot-assisted
hernia repair that can be realized through suture placement
optimization.

Clinical systems use varying degrees of autonomy, from
direct control with the da Vinci Surgical System to supervised
autonomy with the CyberKnife system, which precomputes
a treatment plan and helps surgeons track moving tumors to
deliver radiotherapy [11]. The ROBODOC system performs
the femoral preparation step of knee arthoplasty autonomously
after a surgeon guided registration sequence [12].

While no minimally invasive supervised autonomy surgical
system is used in clinical practice, in the lab setting there has
been work done on automating surgical subtasks and primitives
such as suturing [1, 5, 13–16], cutting [2], steerable needle
guidance [17], prob alignment [18], grasping [19], debridement
[20, 21], and tensioning [22]. D’Etorre et al. designed a system
that performs closed-loop visual servoing with the assistance
of a surgeon to complete the needle handoff step in suturing
[14]. Jackson et al. and Russell et al. formulated and evaluated
a motion planning procedure to analytically generate robot
trajectories to perform suture throws without visual feedback
[15, 23]. We define a similar needle insertion motion.

Shademan et al. designed the Smart Tissue Autonomous
Robot (STAR) to perform supervised autonomous anastomosis
with near-infrared fluorescent (NIRF) imaging to track tissue
motion [5]. They demonstrate that their system, built with a
7-DOF Kuka LWR 4+ industrial arm and a 1-DOF Endo360
suturing tool, outperformed human and robot-assisted human
surgeons in leak pressure and suture spacing.

B. Dexterity Optimization and Human-Robot Collaboration

Within the problem subspace of dexterity optimization
[24], many metrics have been proposed for characterizing
the dexterity and performance of robot arms [25]. The spatial
Jacobian J(q) ∈Rm×n of the robot is widely used to assess the
end-effector velocities ẋ ∈ Rm that can be generated by input
joint velocities q̇ ∈ Rn with ẋ = J(q) q̇ [26]. This defines a
manipulability ellipsoid and its properties can be summarized
through functions related to its semi-axis lengths (the singular
values σ of J(q)) [27, 28]. The Euclidean norm of ‖q̇‖ ≤ 1 or
ẋT (JJT )−1ẋ≤ 1 defines an ellipsoid. The end-effector can move
at high speed along the principal axis of this ellipsoid, but can
only move at a very low speed along the minor axis. Related
dexterity metrics include the manipulability index, the condition
number, and the parameter of singularity. Zargarbashi et al. use
condition number as a performance index to improve joint-rate
distribution [29]. Another strategy is to avoid joint limits of
the robot, which are not necessarily encoded by information
in the robot Jacobian. Huo et al. propose a joint cost between
singularity and joint limit avoidance for the task of robotic
welding [30]. Garg et al. study needle path planning in the
presence of occluded volumes for automated brachytherapy
[31]. We propose a similar problem to avoid constrained regions
for semi-autonomous suturing on surgical mesh.

Within robot learning, prior work investigates algorithms
that allow robots to learn from human interaction through
measurements such as physical corrections and disturbances
[32, 33] as well as EEG-measured error-related potentials from
a human operator [34]. Human-robot collaboration has also
been well studied. Edsinger et al. demonstrate that in response
to reaching gestures, human subjects can successfully hand
objects to and take objects from a robot [35]. It is important to
note that in human-robot control transfer, the final pose of the
object affects the subject’s ability to grasp [36]. Several papers
present frameworks for producing safe, ergonomic human-robot
interaction by generating robot motions via cost functions that
optimize subject safety, posture, vision field, and kinematics [37,
38]. Other metrics have been created to measure performance
during human interaction [39].

III. CIRCLE SUTURE PLACEMENT PROBLEM

A. Overview

The surgeon inputs the center and radius of a circle to
the Circle Suture Placement Planner, which plans an optimal
sequence of suture positions and directions. In this paper, we
investigate the effect of modifying the location and direction
of sutures.

The optimal location and direction of four evenly-spaced
sutures are computed by solving the Circle Suture Placement
Algorithm outlined in this section.

B. Notation

A position on a given circle is identified by the single angle θi.
Direction di of a suture on the boundary of a circle is clockwise
if di =+1 and counterclockwise if di =−1. The placement of
suture i on a given circle can be identified by a tuple (θi,di)



where θi ∈ [0,2π) and di ∈ {−1,+1}. Unless otherwise speci-
fied, the best direction di is selected, so the suture is referred to
by its position θi in the remainder of the paper. The procedure
to select the best direction is discussed Section III-D1. A
sequence of four evenly spaced sutures is called a suture
plan and is represented by (θ1,d1),(θ2,d2),(θ3,d3),(θ4,d4).
Because the best direction at a position is selected unless
otherwise specified, the location of the first suture uniquely
specifies the entire suture plan. We identify suture plans by
their first suture position θ1.

C. Assumptions

1) Suture Placement: We assume that evenly-spaced sutures
are required to maintain tension in the surgical mesh. Sutures
are constrained to be placed tangent to the boundary of a circle
on the tissue phantom specified by the surgeon. Sutures can
be thrown either clockwise or counterclockwise on the circle,
but must be thrown in a direction tangent to the circle. We
assume permuting the order of the stay sutures does not affect
the configurations encountered when performing the task. The
phantom is at a fixed, known position centered in the workspace
of the arms.

2) Needle Insertion: To construct robot trajectories for au-
tonomous needle insertion for evaluation in simulated analysis,
we define a motion primitive to perform this task. The motion
is hand-tuned to maximally avoid joint limits when multiple
feasible trajectories exist to perform the same suture, but the
same end-effector is used for needle insertion at all areas of
the workspace. This restriction is imposed because prior work
on autonomous suturing uses fixtures to stabilize the needle
pose during the needle insertion motion [1, 5]. We assume
that the pose of the needle relative to the grippers is a known
constant and that the surgeon is able to load the needle into
the gripper in between sutures to accomplish this. The specific
parameters assumed for this motion are discussed in Section
IV-A1. An implementation of the motion is not physically
evaluated in experiments, and all semi-autonomous analyses
are conducted in simulation. The experiments consider a setup
with two 7-DOF dVRK arms with a fixed Remote Center of
Motion (RCM).

3) Reward Function: We assume that only the wrist joints
are constrained, because the remaining joints are far from
joint limits during the task. However, the approach in this
paper is extensible to all robot joints in tasks where non-wrist
joints are also constrained. We weight all wrist joints and arms
evenly and assume that the start and end poses of a needle
insertion provide a sufficiently accurate bound for the wrist
joint angles during suturing. We are also limited by the set of 16
physical demonstrations collected to estimate the distribution
of joint states visited by the surgeon during teleoperation. This
distribution is used to estimate the average manipulability index.
The distributions used to define the reward in Section III-D2
can vary across surgeons and across circle positions.

D. Dexterity Reward

1) Joint Margin: The needle insertion planner described in
Section IV-A1 and Figure 2 fails to guide the needle in the
defined trajectory when the desired wrist joint configuration
of the arm approaches or exceeds joint limits qlimit . The wrist
joint angles are centered around 0, and to penalize needle
insertion motions that are close to joint limits, we compute
the maximum absolute joint angle for each wrist joint over the
desired start and end poses of the needle insertion arm during
needle insertion. We compute this in both directions at θi on
the circle by computing the inverse kinematics of a simulated
da Vinci arm. We let qmax,d(θi) denote the vector containing
the maximum absolute joint angles for the needle insertion at
θi in direction d.

The nonnegative joint margin is defined to be Q(θi) =
maxd∈{−1,+1} ‖|qmax,d(θi)| − qlimit‖2

2. This function quadrati-
cally rewards configurations that avoid joint limits for the
best suture direction at θi. Q maps a position to a nonnegative
real number and is used to select the optimal direction of a
suture.

2) Manipulability Reward: The squared manipulability
index of a joint configuration q of a robot arm with Jacobian
J is defined as |J(q)J(q)T |. This function indicates the range
of twists t that can be generated at q and has been used
to optimize base placement of the da Vinci Research Kit to
avoid regions near joint singularities [40]. We observe that
manipulability varies during teleoperated needle extraction and
thread manipulation, which is associated with unpredictable
motions of the robot arms and errors (Figure 6).

Therefore, we define a nonnegative manipulability reward
M(θi) = Eθi |J(q)J(q)T | which evaluates the average squared
manipulability index where Eθi indicates expectation with
respect to the distribution of joint configurations visited when
performing a suture at θi. Both arms are considered equally
for this reward, which maps a position to a nonnegative real
number. We discuss how this function is approximated in
Section IV-A2 and its variability in Section IV-C.

3) Dexterity Reward: The optimization problem considered
in Section III-H considers a weighted combination of the
joint margin and manipulability reward. The dexterity reward
D(θ) = min1≤i≤4 λQ(θi) + (1− λ )M(θi). The parameter λ

weights Q and M where λ ∈ [0,1]. The dexterity reward reports
the value for the lowest scoring suture. Both functions are
adjusted to occupy the same range before relatively weighting
each reward with λ . We numerically evaluate the sensitivity of
this parameter in Section IV-D. We use λ = 0.75, because the
optimal plan at this setting is robust to variation in λ (Figure
7).

4) Integral Positions: To solve for the optimal suture plan,
the set of all possible positions is approximated by [0,360)∩Z,
which restricts suture positions to integral values.

E. Input

The surgeon provides the parameters for a circle centered
on the hernia phantom as input.
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Figure 2: To evaluate the joint margin Q, we divide a suture into a
sequence of semantically significant steps. (1) The needle penetrates
the tissue phantom in a straight path of length v = 1.0 cm at a fixed
entry angle φ = 30◦. (2) The needle is rotated ψ = 70◦ to follow
a path generated by its curvature. (3) The needle is then regrasped
further up and rotated a fixed number of times. (4) Finally, the surgeon
manually pulls out the needle and thread and prepares for the next
suture. The red squares indicate needle grasps by the needle insertion
arm. The start and end joint angles of the first three steps are used
to evaluate qmax, which is used to evaluate the joint margin and
best suture direction. This reference trajectory is similar to the one
implemented by Jackson et al. [15].

F. Output

The algorithm outputs an optimal suture plan that maximizes
the minimum weighted sum of joint margin and manipulability
reward over all sutures.

G. Circle Suture Placement Problem

Under these assumptions, finding an optimal sequence of
sutures is equivalent to solving the following Circle Suture
Placement Problem:

θ
∗ = argmax

θ

min
1≤i≤4

λQ(θi)+(1−λ )M(θi)

such that

θ(i+1)mod4−θi = 90 ∀i ∈ {1,2,3,4} (evenly-spaced sutures)

θi ∈ Z∩ [0,360) ∀i ∈ {1,2,3,4} (integral angles)

The solution to this problem maximizes the distance to joint
limits and average manipulability when performing a sequence
of evenly-spaced semi-autonomous sutures. The two constraints
force the resulting suture locations to be evenly-spaced and
placed at integral locations on the boundary of the circle. The
first constraint also fixes the ordering of the vector θ that
contains the locations of the sutures. The direction of each
suture is chosen by selecting the direction with greatest joint
margin for each θ ∗i .

H. Circle Suture Placement Algorithm

The solution space of the problem includes 90∗24 = 1440
feasible plans, and we find that exhaustive search is tractable
and effective under the assumptions stated in this paper.
A single-threaded Python implementation of this algorithm
computes a solution in 0.4 seconds on an Ubuntu PC with
commodity hardware.

Figure 3: The optimal suture direction changes as a function of
position on the circle. The suturing arm originates at a point below
and to the left of the tissue phantom. The changes in suture direction
correspond to discontinuities in the joint state in Figure 4 and points
where joint margins in either direction are equal in Figure 5.

IV. EXPERIMENTAL SETUP AND SIMULATED RESULTS

A. Reward Function Evaluation

1) Joint Margin: The open-loop controller discussed in
Figure 2 is used to evaluate the joint margin a priori during
suture plan optimization. The needle insertion primitive takes
in a position and a heading and performs an initial needle
penetration and rotation in the phantom followed by 2 motions
to push the needle further through the phantom after regrasping.
The nominal trajectories for insertions on the circle are tuned to
compensate for kinematic inaccuracies of the robot. Although
the pose of the needle relative to the gripper is fixed, we
observe this restriction does not affect the existence of high
joint margin sutures at positions on the circle (Figure 5).

2) Manipulability Reward: Because surgeon maneuvers
are difficult to model, to evaluate M in practice, we record
kinematic data for two physical demonstrations of fully-
teleoperated sutures at eight evenly-spaced locations on the
circle. This data is used to approximate the distribution of joint
configurations encountered when suturing at these points. Due
to kinematic and system constraints, we allow the surgeon to
select the preferred direction for needle insertion.

At the positions used in the demonstrations, M is estimated
exactly by computing the mean-squared manipulability index
across both robot arms in the corresponding demonstrations.
To evaluate M at positions that are not in the demonstration set,
we linearly interpolate M between the two closest positions in
the demonstrations.

B. Joint Angle Analysis

We compute and plot mind∈{−1,+1} qmax,d(θi) as a function
of θi in Figure 4 and observe the existence of regimes where
joint range availability is limited. We observe that the needle
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Figure 4: The maximum wrist angles mind∈{−1,+1} qmax,d(θi) of the
suturing arm during autonomous needle insertion is a function of the
location on the circle. Joint 1 has range [−260,260] and joint 2 and
joint 3 have range [−80,80]. Safe regions that maintain a distance to
the joint limits occur near the sets [0,30], [140,160], and [300,360)
and large jumps at 67◦ and 228◦ indicate points where the optimal
direction changes. The black, dashed line indicates joint limits for
two of the wrist joints.
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Figure 5: The joint margin is evaluated for sutures placed on the
boundary of the circle. We observe this value is high in at least one
direction at all positions and the transition points between preferred
arms occur at θ = 67◦ and θ = 228◦.

insertion primitive can still guide the needle in a feasible
trajectory at locations where joint 3 saturates if it is close to
the desired pose.

We also plot the joint margin for all sutures in either direction
as a function of start angle (Figure 5). The analysis suggests
that joint margin can be increased significantly by selecting
suture direction optimally. Sutures with low joint margin can
be avoided by performing the suture in the opposite direction.
Solving for the direction that maximizes joint margin, Figure
3 plots the optimal direction for sutures on the circle.

C. Manipulability Analysis

We collect two physical demonstrations at 8 evenly-spaced
points and plot the manipulability reward M of the robot’s
arms at each point in Figure 6. We observe that regions with
high manipulability for one arm correspond to regions with low
manipulability for the other arm. For example, the first arm
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Figure 6: Manipulability reward M is displayed as a function of the
suture location on the circle for physically performed suture throws.
Arm 1 is used to insert the needle into the phantom, and Arm 2 is
used to extract the needle and prepare Arm 1 for the next suture. We
observe variance in manipulability and regions on the circle where
the robot has lower manipulability on average. We observe that the
individual arms have complementary regions of high manipulability.
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Figure 7: Sensitivity to different values of λ . The individual reward
functions are scaled such that each function has maximum value
10 when maximum weight is placed on it before reweighting with
λ . Increasing λ increases the weight for the joint margin, and this
decreases the reward for plans that get close to joint limits. The
maximizer of each function is sensitive to the choice of λ . Plans that
start with θ1 ∈ [40,80] are particularly sensitive to λ as a result and
increasing λ moves the optimal starting location from 28◦ to 11◦.
The range [40,80] corresponds to the region in Figure 5 where both
arms have relatively low joint margin, so increasing the weight on
the joint margin drastically reduces the dexterity.

has high manipulability during sutures performed at positions
near [100,250] while the second has low manipulability in this
region. The converse is true in the region [0,50]∪ [300,360).
We hypothesize that this is explainable by the symmetry of the
positioning of the arms relative to the tissue phantom, which
is centered in the workspace, and that points closer to the base
of the arm appear to experience lower average manipulability.



D. Weighting Factor Sensitivity Analysis

In this experiment, the graph of the dexterity reward is
plotted for several values of λ (Figure 7). We observe that
increasing λ moves the the optimal plan from θ1 = 28◦ to
θ1 = 11◦. Increasing λ also penalizes plans where θ1 is in
the range [40,80], because these plans have low joint margins.
We use λ = 0.75 in the remaining experiments, because the
variance in the dexterity of the optimal plan for this setting is
small across different values of λ .

E. Comparison to Baselines

In Table I, we numerically evaluate the dexterity reward
of performing this optimization procedure against a set of
baselines. Each baseline is defined by two components: a
selection method for the first suture position and a selected
suture direction. Sutures can be performed clockwise, counter-
clockwise, or in the optimal direction. The expected reward for
randomized methods is computed exactly by averaging over
all possible suture plans. The rewards are scaled such that the
best algorithm of any of the baselines is given a score of 100.
To further elaborate, the set of baselines considered are:

1) Random Location, Clockwise Direction: Uniformly at
random selects a location for the starting suture and only
allows sutures performed in a clockwise manner.

2) Random Location, Counterclockwise Direction: Uni-
formly at random selects a location for the starting suture
and only allows sutures performed in a counterclockwise
manner.

3) Random Location, Optimal Direction: Uniformly at
random selects a location for the starting suture and
optimizes over the direction of the suture as well.

4) Optimal Location, Clockwise Direction: Optimizes
over the locations of the sutures with respect to dexterity
with only clockwise sutures.

5) Optimal Location, Counterclockwise Direction: Opti-
mizes over the locations of the sutures with respect to
dexterity with only counterclockwise sutures.

We observe in Table I that optimizing over both direction and
position of the sutures yields a dexterity reward 11-57% higher
than baselines that optimized over either position or direction
only. Optimizing direction provides a larger performance gain
than optimizing location, because the needle throw motion was
constructed in such a manner that at least one direction at a
given position has high dexterity as noted in Figure 5.

V. FUTURE WORK

In future work, we will explore how mesh tension properties
would allow for relaxation of optimization constraints such as
number of sutures and suture consistency and how modifying
the center and radius of the circle would affect dexterity. The
relaxation of these parameters increases the dimensionality of
the feasible set of sequences, so we plan to explore how binary
search and derivative-free numerical optimization can be used to
solve dexterity optimization problems when the set of task plans
is large and discretization is ineffective. We will physically
evaluate the mesh tension and arm performance for optimal and

Table I: Dexterity Improvement of Circle Suture Placement
Planning vs. Baselines: In this table, the reward of optimizing both
position and direction is compared against baselines that optimize over
position or direction only. The results indicate that optimizing both
position and direction of the sutures increases dexterity reward 11.4%
over the next best algorithm and 57.2% over the best algorithm that
sutures in a fixed direction. Optimizing the direction alone provides
a large performance gain relative to fixing a direction. This occurs
because certain regions that are difficult for sutures in a particular
direction are unavoidable, but the set of positions that have low
dexterity for either direction are approximately complementary.

Location Allowable Directions
Selection Clockwise Counterclockwise Optimal
Random 60.2 42.8 88.6
Optimal 65.6 50.6 100.0

suboptimal suture plans. With a larger set of surgeon data, the
distribution of joint states visited during a suture can be more
accurately estimated, enabling better planning. Another exciting
area of future research is characterizing the contribution of
each joint to errors and weighting each joint proportionally in
the construction of the joint margin and manipulability reward.
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