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Abstract – Building on the well-established form closure framework for holding rigid parts, this paper 
proposes a new framework for holding deformable parts. We consider the class of deformable parts that can 
be modeled as linearly elastic polygons with a triangular finite element mesh and given stiffness matrix. We 
define the D-space (deformation-space) of a part as the C-space of all its mesh nodes. Free space is the 
intersection of the set of topology-preserving mesh configurations with the complement of the union of all D-
obstacles that represent collisions of the part with finger bodies. Consider a given set of finger bodies in 
frictionless contact with a part. When positive work is needed to release the part, we say that it is in deform 
closure. We present numerical examples and prove two results: (1) If a contact set holds a rigid part in form 
closure, it will hold the equivalent deformable part in deform closure and (2) deform closure is frame 
invariant. 

We then consider frictionless deform closure grasps with two contact points. We define a measure of grasp 
quality based on balancing the potential energy needed to release the part against the potential energy that 
would result in plastic deformation. Given two jaw contacts at the perimeter nodes, we develop numerical 
algorithms to determine the optimal jaw separation based on this metric. For a part with n mesh nodes and p 
perimeter nodes, we give an algorithm that computes the optimal separation in time O(n3 p2 + p6 log p) and an 
approximation algorithm that runs in time O(n3 p2 + ( p2/ε ) log p). 

 
Index Terms – Form Closure, Deform Closure, C-Space, D-Space, Finite Element Methods, Fixturing, 

Grasping, Workholding. 

1 Introduction 

Research on part-holding usually assumes that the parts are rigid solids [Bicchi00]. However, in many 
applications ranging from assembly to food handling to surgery to xerography, parts deform in response to 
applied forces. Because infinitesimal motion is unavoidable for deformable parts, the well-established 
models of first and second order immobility must be extended. 

There is a substantial body of research on robotic holding (grasping and fixturing) of rigid objects. Our 
work combines FEM meshing with ideas from rigid body immobility by Rimon and Burdick [Rimon96] 
and caging grasps for rigid bodies by Rimon and Blake [Rimon99]. 

In our model, the part perimeter behaves like a planar structure whose perimeter is composed of struts of 
variable length, with hinges at each vertex. We define the D-space (deformation-space) of the part as the C-
space of all nodes in its mesh. Given the initial configuration q0 of the mesh in D-space, we define DT as the 
set of all configurations with the same mesh topology as q0. We consider contact with a set of rigid finger 
bodies A = { A1, …, Ak }. Each finger defines a D-obstacle DAi, the set of mesh configurations that collide 
with Ai. The free space Dfree is the set of feasible configurations, the intersection of DT with the complement 
of the union of D-obstacles. 

Given part E, mesh M, FEM stiffness matrix K, and contact set A, we can determine the potential energy 
of any point in Dfree. Given a candidate configuration qA, we say that the part can be released from A by a 
sequence of external wrenches if the part can escape from qA . We define UA as the minimum work that 
needs to be done by these wrenches to release the part from A. We say that A holds E in deform closure if 
UA > 0. 

We then consider the case where two fingers or jaws make point contact with a given polygonal part at a 
given pair of mesh nodes. We define a new quality metric that balances between squeezing too tight and not 
tight enough. The metric is maximized when the work needed to release the part is equal to the work needed 
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to cause plastic (irreversible) deformation of the part. Note that two point contacts can hold a part in deform 
closure just as two point contacts at concavities can hold a part in form closure [Gopalakrishnan02]. 

As intuition behind our algorithm for computing the optimal jaw separation, we first consider only 
release paths that involve minimal increase in potential energy. This allows us to limit our attention to only 
configurations where both jaws are in contact with the part. Thus, for a given jaw separation, we can 
represent the potential energy as a function of the positions of both jaws along part perimeter (represented 
by arclength parameters). Thus, the potential energy is a two-dimensional surface embedded in three 
dimensions. It is zero when the jaws are relaxed and non-zero when the jaws deform the part. We can 
further simplify the problem by considering only discrete points on this potential energy surface. We 
represent these points in a “contact graph”, where each graph vertex corresponds to a pair of mesh nodes. A 
release path through Dfree corresponds to a sequence of adjacent vertices on the contact graph, starting at the 
vertex corresponding to the given deform closure grasp and ending at any other vertex corresponding to an 
equilibrium grasp for that value of jaw separation. We develop an algorithm inspired by Dijkstra’s 
algorithm to determine the potential energy required to reach an equilibrium configuration. 

The potential energy required to release the part as a function of jaw separation is continuous and 
piecewise differentiable. Our exact algorithm exploits the nature of the quality metric function to identify 
critical points that help determine the optimal jaw separation. Our approximate algorithm computes the 
value of the function by uniform sampling, using a sampling interval based on the stiffness coefficients and 
a given approximation bound. The sample point with the maximal value of the objective function provides 
an ε-approximation to the optimal jaw separation. 

2 Related Work 

Bicchi and Kumar provide a concise survey of literature on grasping and fixturing in [Bicchi00]. Grasps of 
rigid bodies can be classified as force or form closure. Form closure (immobility) occurs when any 
neighboring configuration of the part results in collision with an obstacle. Force-closure occurs if any 
external wrench can be resisted by applying suitable forces at the contacts [Mason01, Rimon98]. Gripper 
contacts can be modeled as frictional points, frictionless points or soft contacts [Salisbury82, Kim03]. 

The mobility of rigid bodies in contact with frictionless finger bodies was initially studied using first 
order approximations [Realeaux1876, Somoff1900, Mishra87, Markenscoff90]. The first order theories are 
based on approximations of part geometry in infinitesimal neighborhoods and part motion of an 
infinitesimal length. However, these first order approximations of mobility do not always predict 
immobility correctly. 

Rimon and Burdick [Rimon96] give rigorous definitions of first and second order immobility. They 
express paths of the part in free space using functions   q(t) based on scalar parameter t. They consider the 
distances di from the ith C-obstacle surface to q(t). They then consider the first and second order terms in the 
algebraic expressions of distances as a function of t. The second order terms are needed if first order tests 
do not show if the distance is increasing or decreasing (the derivative at t = 0 is 0). Geometrically speaking, 
the first order approximation of immobility is equivalent to approximating the trajectory of the part in C-
space as a straight line, and the surfaces of the C-obstacles as hyperplanes. Second order immobility is 
equivalent to approximating the trajectory as an elliptical arc and the C-obstacle surfaces as ellipsoids. 

Rimon and Blake [Rimon99] give a method to find caging grasps, configurations of jaws that constrain 
parts in a bounded region of C-space such that actuating the gripper results in a unique final configuration. 
They consider the opening parameter of the jaws as a function of jaw positions along the perimeter of the 
part and use stratified Morse theory to find caging grasps by finding limiting cases that occur when the 
opening parameter is at a saddle point. [Gopalakrishnan02] also uses the distance function to determine 
immobile grasps of 2D polygonal parts by a pair of vertical cylindrical jaws engaging the part at its concave 
vertices. Jia [Jia04] gives a fast algorithm to compute all grasps at pairs of antipodal points of a curved part. 
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The algorithm divides the part into concave and convex pieces at points of inflexion and numerically 
examines these pieces by bisection in order to compute the grasps. 

An efficient geometric algorithm to compute all placements of four frictionless point contacts on a 
polygonal part that ensure form closure is described by van der Stappen et al [vanderStappen99]. Given a 
set of four edges, they show how to compute critical contact placements in constant time. The time 
complexity of their algorithm is bounded by the number of such sets, and runs in an expected time of  
O ( n2 log  n ) for n vertices. Cheong et al [Cheong03] give fast algorithms to find immobilizing grasps of 
2D polygonal parts with 2 and 3 contacts. The algorithms find sets of contact wrenches that contain the 
center of mass. Zhu et al [Zhu03] give a grasp metric for 2D and 3D grasps to quantify how firmly the rigid 
part is held when resisting external forces. Their metric is faster to compute than similar earlier metrics. 

Cheong et al [Cheong02] give upper bounds on the number of point contacts needed to hold a chain of 
polygons hinged at connecting vertices. They consider the centers of rotation for each polygon such that the 
hinge vertices have the same linear velocities for the pair of polygons they connect. They place contacts 
such that no such rotation is possible. Milgram and Trinkle [Milgram02] describe the topology of C-spaces 
of mechanisms that consist of chains of links connected by rotational joints. 

[Ramamurti98] gives an excellent review of finite element methods and speed and memory 
optimizations for numerical solutions of FEM problems. To solve an FEM problem with n elements 
exactly, O ( n3 ) time is required. The numerical approximation makes use of the fact that FEM stiffness 
matrices are sparse. As a result, there are only O ( n ) non-zero entries in a matrix with n2 elements. 
[Corman01] presents several graph algorithms and data structures. Of particular interest to our algorithm is 
the proof of correctness and time complexity of the modified Dijkstra’s algorithm for sparse graphs 
implemented with binary heaps. For a graph with n vertices and O ( n ) edges, the shortest path can be 
computed in O ( n log n ) time. 

Recent work on fixturing deformable and sheet-metal parts is based on the work of Menassa and De 
Vries [Menassa91] where they determine the positions of the primary datum (the datum points needed to 
locate the part in the correct plane) for 3-2-1 fixturing to minimize deformation. They use a finite element 
model of the part, and determine fixture locations by optimizing an objective that is a function of the 
deformations at the nodes. Their work is extended by [Rearick93] and [Cai96]. 

Gopalakrishnan et al [Gopalakrishnan03, Gopalakrishnan04c] propose unilateral fixtures, a new class of 
fixtures for sheet metal parts with holes, where holding elements lie almost completely on one side of the 
part, maximizing access for welding, assembly, or inspection. Each primary jaw is cylindrical with a 
conical groove that provides the equivalent of four point contacts and facilitates part alignment. They 
present a two-phase algorithm for computing unilateral fixtures where the second phase uses a Finite 
Element Method (FEM) to compute part deformation and to arrange secondary contacts at part edges and 
interior surfaces. For a given sheet-metal part, given as a 2D surface embedded in 3D with e edges, n 
concavities and m mesh nodes, Phase I takes O ( e + n4/3 log1/3n + g log g ) time to compute a list of g pairs 
of primary jaws ranked by quality. Phase II computes the location of r secondary contacts in O ( g m3 r ) 
time. 

Wakamatsu et al [Wakamatsu96] extend the concept of force closure for rigid parts with unbounded 
applied forces to deformable parts with bounded applied forces. They consider a candidate grasp and 
external forces within a bound that can deform and displace the part. They assume that the contact normals 
do not vary as forces are applied, but allow contacts to be broken. They define "bounded force closure" as 
grasps that can resist any external force within the bound. 

Howard and Bekey [Howard97] model deformable parts using a spring-mass model and use a neural 
network to control a gripper. They use tactile feedback to learn the properties of the deformable parts, and 
thus determine the minimum force needed to lift the deformable part. Heinrich and Worn’s edited collection 
of papers [Heinrich00] describes deformation models and control algorithms for the manipulation of 
deformable objects. These include the modeling of fabrics, continuous modeling of deformation of linear 
objects such as beams, collaborative manipulation of deformable parts, laying out wires and cables and 
sewing. [Lin00] study the dual problem of holding a part with compliant fingers. They consider frame-
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invariant parameters derived from the stiffness to compute a metric for multi-fingered grasps and fixtures. 
They use this metric to derive optimum three and four fingered fixtures. 

Hirai et al [Hirai01] propose a robust control law for the manipulation of deformable parts. They use 
tactile feedback from the actuators and video feedback for the positions of selected reference points to 
control the motion of a deformable part. Li et al [Li02] design fixtures for laser welding using a genetic 
algorithm within robust design spaces with low to part dimension and jaw location errors. Li et al [Li02b] 
describe a dexterous part holding mechanism based on vacuum cups and model the elastic deformation of 
the sheet-metal part using Finite Element Methods and a statistical data model. The results from this model 
are used to minimize part deformation. Shiu et al [Shiu97, Shiu03] give a heuristic algorithm to analyze the 
deformation of a sheet metal part by decoupling it into beams based on part features, and give an algorithm 
to allocate tolerances to each feature. 

Path planning for elastically deformable parts has been studied using probabilistic roadmaps (PRM). 
Holleman, Kavraki and Warren [Holleman98] give a path planning algorithm for a flexible surface patch. 
They use a Bezier approximation and an approximate energy function to model deformation of the part. 
They present experimental results of paths planned for parts generated by a search graph using PRM. 
Guibas et al [Guibas99] improve on the PRM methods for path planning for a surface patch by studying the 
medial axis of the workspace. They then compute minimum energy configurations of the part for positions 
along the axis that are connected by quasi-static paths. Lamiraux et al [Lamiraux99] generate a path for a 
thin rectangular elastic metal plate represented by a Bezier when it is manipulated by constraining the 
positions and orientations of two opposite edges. Given the controlling constraints, the shape of the plate is 
computed by minimizing the potential energy due to the deformations. They generate paths using PRM on 
the configurations of the edges being controlled. Moll and Kavraki [Moll04] have extended this approach to 
systems such as surgical sutures and snake robots by computing configurations using constrained 
minimization of potential energy with the length of the curve fixed. However, if there is contact between 
the plate and an obstacle, they discard the configuration. Bayazit et al [Bayazit02] extend this by 
approximating the deformations of the part due to the obstacles for fast computation. For the simplest 
approximation, they consider the deformation of the bounding box of the part. Better approximations 
include moving the part mesh away from the obstacles along the outward facing normals, or sample 
possible deformations along directions based on normals of the part or the obstacles. 

This work is a revised and extended version of material presented in [Gopalakrishnan04] and 
[Gopalakrishnan04b]. 

3 Deformation-Space and Deform Closure 

3.1 Deformation-Space 

Consider an FEM model with linear interpolation and linear elasticity. The input is a polygonal part E 
with polygonal holes, modeled by a 2D triangular FEM mesh M, and the initial undeformed configuration 
q0 of the part, defined in a global reference frame. In this model, the perimeter behaves like a polygon with 
variable length edges and  hinges at each vertex. 

We formally define the Deformation Space (D-Space) of the part as the C-Space of its mesh nodes. We 
then characterize the sub-space of topology-preserving and collision-avoiding deformations. Although we 
focus on cases with only planar translational degrees of freedom, the general definition is as follows. 
Depending on the FEM model used, each of the n nodes in M has a predefined number f of degrees of 
freedom consisting of translational (t DOFs) and rotational/torsional (r DOFs). Every mesh configuration is 
specified by specifying each of the f freedoms of each of the n nodes. Given the positions and geometries of 
all fingers, we represent the mesh in its deformation-space, the smooth manifold D = Rt × Rr when rotations 
are parameterized by ∈θ  Rr via exponential map parameterization. Thus, for a part with n nodes in M, 
each with f degrees of freedom each, the D-space can be parametrized by Rnf, with each coordinate axis 
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corresponding to one DOF of one FEM node. We can represent any deformed translated or rotated shape of 
this part as a unique point in this space. For any point q in D, we denote the corresponding shape and 
configuration of the part by E(q). In our examples with triangular elements with linear elasticity and linear 
interpolation, r = 0 and t = 2. 

We define DT as the set of all q that preserve the topology of M identical to the topology at the given 
undeformed configuration q0. Given a finger body Ai, its corresponding D-space obstacle DAi is the set of 
all configurations q such that E(q) intersects Ai. 

We define Dfree T

C

ki
i DDA ∩







=

=
U

..1

as the set of all valid deformable configurations of M. 

Fig. 2 illustrates examples of configurations that lie in DT and C
TD . Fig. 3 shows slices of Dfree for a 

rectangular part with 5 nodes and a small circular finger body (Fig. 3(a)). Each node has 2 translational 
degrees of freedom along the x and y axes. Fig. 3(b) assumes nodes 1-4 are fixed, and shows the resulting 
Dfree for node 5. Fig. 3(c) assumes nodes 1, 2, 4 and 5 are fixed, and shows Dfree for node 3. 

3.2 Potential Energy in D-Space 

We include the mechanical properties of the part by using the potential energy of any deformed state as 
determined by an FEM model. We assume zero friction between the part and finger contacts, and that the 
part exhibits perfect linear elasticity with known Young’s modulus and Poisson’s ratio. The parameters and 
the mesh geometry define the stiffness matrix, K, that we give as input. 

Let X be the vector of displacements of all nodes from their initial positions in configuration q0, 
expressed in the global coordinate frame used to define the FEM model ( M, K, X ). In FEM, X is usually 
referred to as the nodal displacement vector. X is a distance preserving transformation of q and a special 
case of expressing q when we express nodal degrees of freedom relative to a reference frame whose origin 
coincides with the mesh node at configuration q0, and whose axes are parallel to the axes of the global 
coordinate frame. Thus, the deformation potential energy is a scalar that is a function of the deformation of 
each node. The potential energy at any configuration q in Dfree is represented as U ( q ) = (1/2) XT K  X. The 
potential energy is invariant to rigid transformations. The stiffness matrix K is a positive semi-definite 
matrix K such that for displacements X representing rigid body transformations of E, XTKX = 0, and for X 
representing deformations of the part E, XTKX > 0. 

3.3 Deform Closure 

To define deform closure, we consider as input: 1. the FEM mesh M of the part E, 2. stiffness matrix K 
of the part E corresponding to mesh M, 3. the initial configuration q0 of the mesh that specifies the initial 
topology and undeformed mesh shape, 4. set A of frictionless contacts (finger bodies) that represents the 
grasp/fixture, and 5. the configuration qA in which the part is held by A. 

We propose to characterize deform closure configurations of E based on the D-Space model with 
potential energy.  Note that we use symbols with different subscripts to different but related concepts. For 
example, U is used to represent potential energy, while UA(qA) is used to represent the additional potential 
energy needed to release a part. 

Definition: An equilibrium configuration is any configuration at a local minimum of the potential energy 
in Dfree. In the absence of friction and inertial forces, the part comes to rest at an equilibrium configuration. 

Definition: We consider a set of wrenches that act on E (qA) for any equilibrium configuration qA. If after 
the wrenches are applied and then removed, the part may not return to qA, the wrenches are said to release 
E. 

Definition: If E( qA ) is held by A such that no set of wrenches that increases the deformation potential 
energy of E by at most U can release E from A, we say qA satisfies the property stable (U). 
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In other words, given U ≥  0, A holds E(qA) in stable (U) if and only if 1. qA is at a local minimum of 
the potential energy in Dfree, and 2. We consider all continuous subsets S of Dfree such that for all Sqs ∈ , 

( ) ( ) UqUqU fs +≤ . For all such subsets S, there should not exist Sq ∈1 distinct from qA with q1 at a local 
minimum of the potential energy in Dfree. 

Definition: The threshold potential energy UA for A holding F in configuration qA is defined as 
( ) { })()(sup UstablesatisfiesqEholdingAUqU fAA =  if qA is an equilibrium configuration, and 0 otherwise. A 

holds E(qA) in deform closure if and only if UA ( qA ) > 0. 
A configuration with potential energy U(qA) + UA(qA) where the part can be released from the deform 

closure configuration is called its escape configuration. This is inspired by Rimon and Blake’s analysis of 
caging grasps [Rimon99]. They define a cage of a part E at configuration q by a k-fingered hand with 
opening parameter σ. A configuration x = (q,σ) of the part and the hand is a cage if q lies in a connected 
component of free space Cfree which is completely surrounded by the finger C-obstacles CA1, … CAk. They 
define the caging set C as the set of all hand configurations that maintain the part caged between the fingers 
such that from any initial configuration in C, there exists a continuous path in C leading to a desired 
immobilizing grasp x0 = (q0, σ0). They use stratified Morse theory to analyze cages, and identify maximal 
caging grasps or puncture grasps as occurring at configurations where the distance between the fingers is at 
a saddle point. 

Similarly in D-space, given a configuration qA that is a strict local minimum of the potential energy, we 
would like to identify the maximum U for which A holds E(qA) in deform closure, by identifying escape 
configurations near qA. This value of UA can be used to define a metric for the deform closure 
configuration. 

3.4 Frame Invariance and Equivalence Theorems 

Given a rigid part, we call an undeformed deformable part with the same shape and configuration of the 
rigid part its equivalent deformable part. 

Theorem 1: If A holds a rigid part in form closure, A will hold the equivalent deformable part in deform 
closure, and vice versa. 

By equivalent, we mean that the undeformed part has the same shape and configuration as the rigid 
part. 

Proof: Consider the rigid part in an immobile configuration is immobile, we need to deform the 
deformable part in order to perturb it. Since this increases the deformation potential energy, UA>0. 

Consider a deformable part in deform-closure. Since deform-closure is a strict local minimum of 
potential energy, without increasing the potential energy, it cannot be moved without deforming it. Thus, 
the rigid part cannot be moved from the fixture too. This theorem also holds for higher orders of 
immobility. 

Theorem 2: Frame Invariance. 
The definition of deform closure is frame invariant, i.e. it does not depend on the global reference frame 

used.  
Since the definition of D-space changes with the reference frame used, we prove that the definition of 

deform closure fixtures does not change with the global reference frame by showing the following: 
(a) Displacements caused by a given force are frame invariant 
(b) Potential Energy due to a given set of displacements is frame invariant, and 
(c) A set of configurations of the part whose image is continuous in a D-space defined using one global 

reference frame has an image that is continuous in global in a D-space defined using any other reference 
frame. 

Proof: We denote the global stiffness matrix in reference frame g as Kg. For mesh element mi, we denote 
the component of the stiffness matrix K as Ki, the transformation matrix between the reference frame of the 
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element and the global reference frame g by gTi, and the stiffness of element mi in the local frame by Ki. 
Thus, the stiffness matrix K is the sum of its components for each mesh element and is given by: 

∑=
i

ig KK  

∑ ⋅⋅=
i

T
igiig TKT . 

We denote the two reference frames by g = 1 and 2, and the transformation matrix between the frames by 
2T1. The stiffness matrix changes with the frame used. The two stiffness matrices are related to each other 
as follows: 
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To prove (a), we consider any given set of forces expressed in reference frame 1 by vector F1. Thus: 
1

1
11 FKX ⋅= − . 

The forces expressed in frame 2 are: 
1122 FTF ⋅=  

The displacements predicted by frame 1, when transformed to reference frame 2 are: 

( )( )
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This is the displacement predicted by reference frame 2. Thus, (a) is true. 
To prove (b), we consider the potential energy predicted by the reference frame 1 when E is subject to 

deformations X1 is 1112
1 XKX T . 

The potential energy predicted in frame 2 when E is subject to the same deformation (but transformed to 
frame 2) is: 

2222
1 XKX T ⋅⋅  

( ) ( ) ( )112121121122
1 XTTKTXT TT ⋅⋅⋅⋅⋅⋅=  

112121121212
1 XTTKTTX TTT ⋅⋅⋅⋅⋅⋅=  

1112
1 XKX T ⋅⋅=   

This is the same as the potential energy in frame 1. Thus, (b) is true. 
 
To prove (c), we show that for any two configurations of the part, the distance between their images in D-

space remains the same in all frames of reference, which implies equivalence in continuity in both frames 
of reference. 
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( ) ( )( )∑ −+−=− 22
nbnanbnaba yyxxqq , summed over all mesh nodes n, where xni and yni are the x 

and y co-ordinates of node n in configuration i = a, b. Since we consider only distance-preserving 
transformations when changing reference frames, ( ) ( )( )22

nbnanbna yyxx −+−  is frame invariant for all 
nodes n. Thus, ba qq −  is also frame-invariant. 

4 Optimal Two-Point Deform-Closure Grasps 

4.1 Problem Description 

We now consider two-point grasps: where there are exactly two jaws (finger bodies that make point 
contact).  We specify the initial placement of these jaws on two mesh nodes n0 and n1. The jaw separation, 
σ, is the Euclidean distance between the jaw contact points. In what follows, we describe our approach in 
terms of contracting grasps (where the contacts exert forces towards each other). An analogous approach 
can be developed for expanding grasps. 

We define a quality metric Q to evaluate deform-closure grasps. We define σ* as the jaw separation that 
maximizes Q: Q (σ∗ ) = 

σ
max  { Q (σ ) }. Note that UA, the threshold potential energy, is not an appropriate 

quality metric because for many parts we would trivially close the jaws to zero separation to maximize it. 
We introduce the elastic limit of part material to define a metric that balances the gripping force against 

forces that will result in plastic deformation of the part. Given the elastic limit strain eL of the part material, 
we consider the jaw separation σL at which at least one triangular mesh element reaches the elastic limit. 
We define UL (σ ) as the difference between the potential energies at separations σ  and σL. We define: 

Q (σ ) = min { UA (σ ), UL (σ ) }. 

At the optimal jaw separation σ *, the potential energy needed to release the part equals the  potential 
energy needed to squeeze it to its elastic limit. 

4.2 Problem Description 

We develop an algorithm to determine σ*. 
Input: Polygonal part E, mesh M with n mesh nodes and p perimeter nodes, stiffness matrix K, initial 

undeformed configuration q0, initial contact mesh nodes n0 and n1, and elastic limit strain eL (Fig. 5). 
Output: Optimal jaw separation σ∗ that maximizes Q (σ ). 
 
We make the following assumptions: 
1. The perimeter of the part does not collide with itself at intermediate configurations as it deforms 

from the deform-closure grasp to the escape configuration. 
2. Mesh triangles do not become degenerate. We assume we are given a sufficiently dense mesh that 

does not result in degeneracy. 
3. If we place one contact on the perimeter and move the other along the perimeter at a fixed 

separation from the first contact, the local maxima and minima of potential energy occur when the second 
contact is at a mesh node. Strictly speaking, given a particular mesh, the actual potential energy may be a 
maximum or a minimum even when the contact is at a mesh edge (but not at a mesh node), with the line 
joining the contacts being perpendicular to the edge. However, given a sufficiently dense mesh (with more 
mesh nodes near the contact), the difference between the maximum potential energy and the potential 
energy with the second contact at a vertex can be shown to converge to zero as mesh density increases, 
under the assumption that the error in the FEM approximation of the part also converges to zero. 
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We explain our approach to solve this problem in detail in the following sections. In brief, consider the 
curve Q (σ ) which is continuous and piecewise differentiable. For the exact, algorithm, we identify 
sampling points on the curve based on end-points of intervals where the curve is differentiable. We evaluate 
the quality at these sampling points to determine the exact function Q (σ ). For the approximate algorithm, 
we bound the slope at any point on the curve. This bound is used to generate uniformly-spaced sampling 
points where we evaluate Q (σ ) such that the error in Q (σε ) due to sampling is at most ε. In order to bound 
the slope and in order to determine Q (σ ) at the sampling points, we need to first identify points and paths 
of interest as the part is released with minimum increase in potential energy. Generating these points and 
their potential energies for a given separation allows us to compute the threshold potential energy for a 
given jaw separation. 

4.3 Points and Paths of Interest in D-Space 

To compute σ∗, we would like to determine a path that the part can follow to be released with minimal 
increase in potential energy. Since it is inefficient to consider every possible path in D-space, we create a 
graph to represent key configurations as graph vertices. 

We use the following notation: qA is the initial configuration of the part when grasped by contacts at  
(0, 0) and (σ, 0) engaging the part at n0 and n1 respectively. σ ( na, nb ) is the distance between mesh nodes 
na and nb. σ0 ( na, nb ) is the distance between mesh nodes na and nb at configuration q0. 

To release the part from A, we move it along a path in D-space starting at qA and ending at an escape 
configuration. To determine the threshold potential energy, we are interested in an escape configuration 
with least potential energy. From assumption 3, if one contact were fixed on the part perimeter and the other 
jaw is allowed to slide along the perimeter, the potential energy as a function of the position of the second 
jaw is monotonic (increasing or decreasing) in every interval corresponding to one mesh edge. This implies: 
1) there exists such an escape configuration qp with both contacts at mesh nodes, and 2) there exists a path 
in D-space from qA to qp such that one of the contacts is always at an FEM node such that qp has the 
maximum potential energy among all configurations on the path. It is sufficient to consider the paths where 
one contact is always at a mesh perimeter node. 

We construct a "contact graph" G to represent such paths. Let V be the set of vertices in G. Every graph 
vertex v ( na, nb ) corresponds to point contacts present at a pair of perimeter mesh nodes na and nb. These 
are points of interest in D-Space. We connect graph vertices v ( na, nb ) and v ( na, nc ) are connected by an 
edge if: 1) nb and nc are connected by a mesh edge on the part perimeter, or 2) an arc centered on na and 
having radius σ and lying on the exterior of the part has one end point nb and the other end-point on a mesh 
edge flanking nc. The second case is when the part can be rotated about a mesh node till the contact reaches 
the perimeter near another mesh node. Paths in this graph represent paths of interest in D-Space. 

4.4 Potential Energies at Graph Vertices 

At each graph vertex, we are interested in the minimum possible potential energy when the contacts engage 
the part at the corresponding mesh nodes na and nb, with separation σ. This is determined by solving the 
FEM model with boundary conditions restricting na at (0, 0) and nb at (σ, 0). 

We note that we use a linear FEM system to model the part. We compute nodal deformations by solving 
a system of linear equations subject to the boundary conditions. As a result, for any graph vertex when the 
two contacts perform a contracting grasp at ( na, nb ), the potential energy associated with the corresponding 
vertex is a quadratic function of σ  given by U ( na, nb, σ  ) = ½ kab ( σ – σ0 ( na, nb) )2, when the jaws 
squeeze the part, and 0 when the jaws are relaxed. Here, kab is the component of the force applied by the 
contacts towards each other when σ0 ( na, nb) – σ = 1 unit. However, for σ > σ0 ( na, nb), the potential 
energy for contracting grasps is 0. It is equivalent to replacing the part by a linear spring of stiffness kab. 
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We first compute the value of kab for all v ( na, nb ) by solving the FEM model with boundary conditions 
na is at (0, 0) and nb is at (σ0 ( na, nb) - 1, 0). 

For the graph vertex v ( n0, n1 ) alone, we also compute the strains at each mesh node. We find the 
maximum strain over all nodes as emax. 

Thus each graph vertex v ( na, nb ) is associated with a potential energy U ( na, nb, σ  ) = ½ kab ( σ – σ0 ( 
na, nb) )2, where kab are known. Some of these vertices correspond to equilibrium configurations. A vertex v 
( na, nb ) is in equilibrium if for every neighbor v ( nc, nd ) of v ( na, nb ), 

U ( nc, nd, σ  ) ≥  U ( na, nb, σ  ). 

Thus, for a given jaw separation, the potential energy of the part as a function of jaw positions on the 
part perimeter is a two-dimensional surface embedded in three dimensions. The potential energy is non-
negative. When the jaws are relaxed (separation is greater than undeformed separation for a contracting 
grasp) the potential energy is zero. When both jaws are in contact, the potential energy is a quadratic 
function of the deformation. Equilibria lie at the local minima of this surface. The deform-closure grasp will 
lie in a strict local minimum. An escape path will start from this point and end at another local minimum 
with maximum potential energy at a saddle point in the “valley” containing the deform-closure. 

Recall that we computed emax, the maximum strain for a unit reduction of jaw separation from the 
undeformed configuration with the contacts at n0 and n1. We use this to determine σL as  
σ0 ( n0, n1) – ( eL / emax ). The additional potential energy needed for the contacts to squeeze the part to the 
elastic limit is given by UL ( σ ) = ½ k01 (σL

2 - σ 2 ). Recall that the quality metric is given by: 
Q ( σ )  = min { UA ( σ ), UL ( σ )}. 

4.5 Computing Sample Points 

In this section, we will examine the nature of the function UA ( σ ) to choose appropriate sampling points 
that determine σ* exactly. 

Consider a path from v ( na, nb ) to an equilibrium vertex. The path is a sequence of vertices. Each graph 
vertex v(nc, nd ) on the path has a potential energy function U ( nc, nd , σ ). The potential energy needed to 
release the part through this path is given by the upper envelope of all these potential energy functions. 
There are many equilibrium nodes, and many paths to each equilibrium node. Each path has an upper 
envelope that gives the potential energy needed. If we consider all the upper envelopes over all the paths 
and take their lower envelope, this gives the minimum potential energy needed to release the part as a 
function of contact separation. The difference between this lower envelope and function U ( n0, n1, σ  ) is 
the threshold potential energy UA ( σ ) of the deform-closure grasp. 

Thus, UA ( σ ) is a continuous piecewise quadratic function. Each piece corresponds to the potential 
energy of one graph vertex (escape configuration). We identify these intervals as follows: we consider 
every pair of graph vertices and evaluate the values σn of separation for which the potential energy curves 
of this pair intersect with each other. We then sort these values of σn in ascending order. Between any 
consecutive pair of σn values in the sorted list, UA ( σ ) will be a quadratic function. We determine UA ( σ ) 
exactly in each of these intervals by evaluating it at any three points in the interval. We choose the 
endpoints and the midpoints of the intervals for this purpose. Thus, we evaluate UA ( σ ) exactly in every 
interval. To maximize Q ( σ ) globally, we maximize it in each interval using the procedure given in the 
next section and take the largest of these maxima. 
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4.6 Computing Optimal Jaw Separation 

We now consider a given fixed value σi of contact separation, we need to find the threshold potential 
energy UA ( σi ). Consider a path (a sequence of connected graph vertices) from v ( n0, n1 ) to equilibrium 
configuration v ( na, nb ). Let Umax be the maximum potential energy over all nodes traversed by this path. 
There are many equilibrium vertices and many such paths. Let Up be the minimum of the Umax values over 
all such paths. The threshold potential energy UA ( σi ) is given by Up - U ( no, n1, σι  ). 

We determine UA ( σi ) using the contact graph G by an algorithm inspired by Dijkstra’s shortest path 
algorithm. We maintain a set Ω of vertices with known minimum work needed to get to, and a list Umin of 
these minimum works. We also compute a list Ψ of estimated minima of work needed to reach vertices in V 
- Ω  that are adjacent to vertices in Ω. The estimate assumes that in the path used to reach the node, the 
previous node lies in Ω. We then update Ω by adding the graph vertex with minimum Ψ . 

Sub-procedure UA ( σι ): 
Initialize Ω ← { v ( n0, n1 )}, Umin (v ( n0, n1 ) )= 0,  

Ψ( v ( na, nb ) ) = U (  n0, n1 , σ ι   ) - U ( n0, n1 , σ ι ) 
for all vertices v ( na, nb ) adjacent to v ( n0, n1 ),  

Ψ( v ( na, nb ) ) =  ∞ for others. 
While Ω ≠ V do 

v ( nc, nd ) ← arg_min {Ψ ( v ( na, nb ) ) } 
Ω ← Ω  ∪ { v ( nc, nd ) } 
Umin (v ( nc, nd ) ) = Ψ ( v ( nc, nd ) ) 
If v ( nc, nd ) is an equilibrium vertex,  

return Umin (v ( nc, nd ) ) and stop. 
For each v ( na, nb ) in V - Ω  adjacent to v ( nc, nd ), update: 

Ψ( v ( na, nb ) ) ← min {max {Ψ( v ( nc, nd ) ), 
U( na, nb , σ ι ) – U ( n0, n1 , σ ι ) } ,Ψ( v ( na, nb ) )} 

End while. 
 
We can prove that Umin always contains the minimum increase in potential needed to reach any element 

in Ω as follows: Initially, when Ω = { v ( n0, n1 )}, this is true. When a vertex v ( nc, nd ) is added to Ω, 
assume that Umin is larger than the minimum work needed to reach v ( nc, nd ). This implies that in the path 
that needs to be taken to reach v ( nc, nd ) to minimize the additional potential energy needed, the graph 
vertex preceding v ( nc, nd ) is in V - Ω. In the sequence of graph vertices represented by the path, consider 
the first graph vertex v ( na, nb ) in V - Ω.  Ψ( v ( na, nb ) ) ≥ Ψ( v ( nc, nd ) ) since we add smaller estimates 
to Ω first. Thus, U ( v ( nc, nd ) ) ≥ Ψ( v ( nc, nd ) ). This contradicts the assumption that Umin (v ( nc, nd ) ) is 
not the minimum possible. 

Thus, we obtain UA ( σι ) as the difference in the maximum potential energy needed to reach a second 
equilibrium configuration and the potential energy of the grasp configuration (note that this returns zero for 
grasp configurations that are not stable equilibria). UL ( σι ) is obtained as discussed in the previous section. 
We thus obtain Q ( σi )  = min { UA ( σi ), UL ( σi )}.  For each interval defined by consecutive values in σn, 
we determine the UA for each endpoint and the midpoint, and hence determine it as an exact quadratic 
function of σ. Thus, for each interval, we determine the maximum value of Q ( σ ). We return the value of σ  
for which Q ( σ ) is the global maximum, as σ∗. 
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4.7 Approximation to Optimal Jaw Separation 

In the previous section, we sampled the curve Q ( σ ) at selected values of σ to determine the exact 
function. In this section we give a more efficient algorithm that finds an approximation σε to σ *. We 
specify ε as the maximum allowed error in Q ( σε ) due to the approximation. 

In this algorithm, we ignore the sequence σn. Instead, we uniformly sampling the interval [0, σ0 ( n0, n1)] 
to maximize Q ( σ  ). We define λ = max { kab σ0(a, b)} over all perimeter mesh nodes a, b. With uniform 
sampling at intervals of size ξ = ε / λ, we can show using the derivative of Q ( σ ) that the error in the 
optimal metric is at most ε. 

For all σi = i  ε / λ, i = 0, … ,  ) ) ,( 100   /  ( ελσ nn , we find the threshold potential energy using the 
procedure described in the previous section. We take σε = arg_max { Q ( σi ) }. 

4.8 Numerical Example 

As shown in Fig. 6, we implement both algorithms and compare them using a sample part with 
dimensions approximately 12 mm x 20 mm. The part material is rubber with the standard Young’s modulus 
of 2 MPa, and Poisson ratio of 0.1. The strain at the elastic limit is 0.8. The undeformed distance between 
the mesh nodes shown is 10 mm. We modeled the part using I-deas and ANSYS on a PC with a 1.4GHz 
Pentium IV processor, running Windows XP. Each FEM problem was solved in approximately 0.28 
seconds. The initial computation of all kab values required 1023 seconds. 

The exact algorithm computed the optimal jaw separation to be 5.638 mm after 9486 iterations (759 
seconds). 

The approximate algorithm with ε = 6.46 Joules (chosen for sample length ξ =  0.1 mm) computed the 
approximate jaw separation to be 5.600 mm after 44 iterations (3.5 seconds), a speedup of over 200x. 

 

5 Discussion 

5.1 Complexity 

As shown by [Ramamurti98], FEM systems can be solved exactly in O( n3 ) time for a part with n mesh 
nodes. For a part with n mesh nodes and p perimeter nodes, the graph used for the algorithm has O( p2 ) 
nodes and O( p2 ) edges. Thus, pre-computing the kab values for each graph vertex requires O( n3 p2 ) time. 
Computing UA for a known separation requires O( p2 log p) time when the graph is implemented as a 
binary heap (this complexity is identical to that of Dijkstra’s algorithm for sparse graphs). For the exact 
algorithm, there are O( p4 ) values of σn, and hence O( p4 ) intervals to evaluate UA ( σ ). In the approximate 
algorithm, the distance between sampling points is ε/λ, implying that there are ( σ0 (0, 1) λ / ε ) sampling 
points. Thus, the complexity of the exact algorithm is O( n3p2 + p6 log p ) while σε can be computed in  
O( n3p2 + p2/ε  log p ) time. 

5.2 Symmetries in D-Space 

If we were to construct a model of D-space by brute force, the amount of computation involved in 
determining Dfree may be extremely high. For example, for the 12 node mesh in Figure 1, the D-Space will 
be 24-dimensional. However, we can simplify the computation of computing Dfree using the symmetries of 
D-obstacles and of DT. D-obstacles are symmetric, since any two triangles of the mesh collide with any 
given finger body in identical configurations of the triangles. Hence, for every triangle in the mesh, the 
slice of the D-obstacle (with other nodes at fixed positions) will be identical to that of any other triangle, 
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and further, independent of the positions of nodes outside the triangle. Thus, the D-obstacle is defined by 
the union of prisms whose cross sections are these slices. At the center of all these prisms is the 
configuration where the part shrinks to a point inside the obstacle.  For the part in Figure 1, this causes the 
D-obstacles to have a 12-fold symmetry due to presence of 12 elements in the mesh. Further, for identical 
obstacles, each D-obstacle is a copy of every other obstacle displaced by a known vector. 

Although the set of topology preserving mesh configurations DT may not be symmetric in itself, we 
consider a superset D’T of DT that consists of all meshes such that no mesh triangles intersect and no mesh 
triangle has zero area. D’T contains configurations that cannot be attained by the physical part (such as a 
mirror image of the undeformed mesh), but DT is a maximal continuous subset of D’T. For the part in 
Figure 1, this results in 23 symmetries because of pairs of distinct triangles, 29 symmetries for pairs of 
triangles with 2 distinct vertices each, and 13 symmetries for pairs of triangles that have 1 distinct vertex 
each. 

5.3 Conclusion and Future Work 

We presented a new framework and a definition for workholding of deformable parts. We then 
formulated the problem of optimizing the separation between a pair of jaws holding a deformable polygonal 
part. We gave a fast approximate algorithm and an exact algorithm to solve this problem. 

We are working on reducing the complexity of the exact algorithm by modifying the algorithm to find 
UA for a given separation to update the estimates for threshold potential energy and optimal separation 
simultaneously. We believe that there is a much faster algorithm possible since there can be at most O( p2 ) 
escape configurations since there are at most O( p2 ) graph vertices. Hence, there can be at most O( p2 ) 
quadratic pieces of Q ( σ ) as against the O( p4 ) candidate intervals we consider. Thus, it may be possible to 
obtain an algorithm that runs in O( n3p2 + p4 log p ) time or faster. It may be possible to use Boundary 
Element Methods [Ramamurti98] to obtain a faster algorithm. 

In future research we will generalize the D-Space framework and Deform Closure definition to non-
triangular meshes with non-linear FEM, and to three-dimensional parts. We are also working on the 
mechanics on achieving deform-closure grasps and the necessary and sufficient number of contacts needed. 
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Fig. 1. (a) Deformable part, modeled as a polygon with a finite element mesh and given stiffness matrix.  The part 
perimeter behaves like a planar structure whose perimeter is composed of struts of variable length, with hinges at 
each vertex. (b) The same part held in deform closure by two frictionless point contacts.  
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Fig. 2. For the rectangular part in (a), deformed configuration (b) lies in DT, while deformed configuration (c) lies in 
C
TD . 
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Fig. 3. For an example part with 5 nodes and one circular obstacle, Dfree for nodes 5 and 3 ((b) and (c) respectively) 
shown when the remaining nodes of the rectangle are held fixed in the positions shown in (a). The shaded region lies 
inside Dfree. 
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Fig. 4. For the Potential Energy curve shown, qA and qB are stable equilibria. But for the shown value of U, only qB 
satisfies stable (U). 
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Fig. 5. The algorithm maximizes quality metric Q (σ ), where σ  is the contact separation. We want to find σ*, the 
jaw separation that balances the energy needed to release the part vs. that needed to plastically deform it. 
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Fig. 6. (a) Example part with initial jaw separation 10mm for the perimeter mesh nodes shown. (b) The same part at 
optimal jaw separation  5.638 mm. 


