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Abstract— Automation of surgical subtasks using cable-
driven robotic surgical assistants (RSAs) such as Intuitive
Surgical’s da Vinci Research Kit (dVRK) is challenging due
to imprecision in control from cable-related effects such as
cable stretching and hysteresis. We propose a novel approach
to efficiently calibrate such robots by placing a 3D printed
fiducial coordinate frames on the arm and end-effector that
is tracked using RGBD sensing. To measure the coupling
and history-dependent effects between joints, we analyze data
from sampled trajectories and consider 13 approaches to
modeling. These models include linear regression and LSTM
recurrent neural networks, each with varying temporal window
length to provide compensatory feedback. With the proposed
method, data collection of 1800 samples takes 31 minutes and
model training takes under 1 minute. Results on a test set
of reference trajectories suggest that the trained model can
reduce the mean tracking error of physical robot from 2.96 mm
to 0.65 mm. Results on the execution of open-loop trajectories
of the FLS peg transfer surgeon training task suggest that
the best model increases success rate from 39.4 % to 96.7 %,
producing performance comparable to that of an expert surgical
resident. Supplementary materials, including code and 3D-
printable models, are available at https://sites.google.
com/berkeley.edu/surgical-calibration

I. INTRODUCTION

Accurate automated control of cable-driven surgical robots
such as the da Vinci Research Kit (dVRK) [1] is challenging
due to cable-related effects such as hysteresis and cable
tension [2], [3]. These effects result in errors in the robot’s
odometry because the encoders that track joint configurations
are frequently located near the motors but far from the
joints. Automation of robot-assisted surgery can be very
difficult due to the accuracy and precision required to perform
surgical subtasks [4] and may require slow and tedious manual
calibration [4], [5]. In current practical applications for robot
surgery, human surgeons compensate for these inaccuracies.

In this paper, we present a method to efficiently calibrate
a dVRK that places 3D-printed fiducials on the end effector
and arm (Fig. 1), uses RGBD images to estimate the robot’s
ground-truth joint configuration relative to its commanded
joint configuration, trains a model, and implements a con-
troller that compensates for history-dependent cabling effects.
We also present an empirical analysis of these effects.

Prior work has studied learning to compensate joint
estimation errors by considering current observations of

1AUTOLAB at the University of California, Berkeley, USA.
http://autolab.berkeley.edu/

2UC San Francisco East Bay, USA.
3SRI International, USA.
Correspondence to: Minho Hwang, gkgkgk1215@berkeley.edu

Fig. 1: da Vinci Research Kit (dVRK) with 3D-printed spherical fiducials
that facilitate tracking of true location of the six joints. A Zivid OnePlus
RGBD camera is mounted 0.9 meters above the workspace (top).

robot state [6], [5], [7]. To create a compensatory model for
history-dependent effects, we incorporate a sequence of prior
observations. We investigate design choices such as temporal
window size, linear modeling vs. deep learning, forward vs.
inverse system identification, and usage of prior model outputs
as current inputs. Empirically, the best model is a recurrent
neural network on the forward dynamics with a temporal
window of 4, which can reduce the mean-squared joint error
by 98.4 % on a held-out test set of random trajectory data.
As the model fits data for a specific instrument to compensate
for its specific cabling effects, the calibration procedure needs
to be efficient. With the proposed method, data collection
of 1800 samples takes 31 minutes and model training takes
under 1 minute.

The accuracy of the ground-truth measurement system in
this study is evaluated as 0.32 mm in sphere detection and
less than 0.6 deg in joint angle estimation. The proposed
calibration method could be adaptable to any depth-sensing
or stereo cameras with easy-to-manufacture fiducials. The
3D-printed markers and the RGBD camera used in this study
cost $20 and $1000 respectively.

We integrate the compensatory model into the robot’s
control loop and run automated trials of a variant of the
Fundamentals of Laparoscopic Surgery (FLS) peg-transfer
task using open-loop trajectories. The peg-transfer task is a
standard surgeon training task that requires high precision and
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dexterity to perform. Prior work on automating this task uses
hand-tuned calibration procedures [4] or visual servoing [8]
to compensate for robot inaccuracies. Experiments suggest
that the new calibration method can increase the per-block
transfer success rate from 39.4 % to 96.7 % without visual
servoing.

This work makes the following contributions: (1) a low-
cost hardware fiducial design, used with RGBD to track
ground-truth joint positions of the dVRK, (2) experiments
suggesting that the wrist joints are the main source of state
estimation errors, (3) correction of robot joint configuration
estimation errors using an LSTM recurrent neural network
that considers the history of observations and predictions, (4)
physical robot experiments suggesting that the compensatory
model can significantly increase the accuracy and precision
of open-loop trajectories in a challenging peg-transfer task.

II. RELATED WORK

Surgeons routinely use surgical robots to perform opera-
tions through teleoperation; however, no procedure includes
automated subtasks in clinical settings. In research settings,
several groups have demonstrated results in automating
surgical subtasks, such as suturing [9], [10], [11], [12], cutting
gauze [13], [14], smoothing fabrics [15], identifying tumors
via palpation [16], performing debridement [17], [18], tying
knots [19], tissue manipulation [20], [21], inserting and
extracting surgical needles [22], [23], [24], and transferring
blocks in the peg transfer task [8], [4].

These surgical tasks often require absolute positional
accuracies bounded within 2 mm, which is difficult to obtain
with cable-driven surgical-assistant robots [1], [25], [26],
especially flexible surgical robots [27], [28], as they are
known to suffer from cable stretch, cable tension, and
hysteresis. Research groups have taken various approaches to
compensate for these inaccuracies, such as by using unscented
Kalman filters to improve joint angle estimation [3] estimating
cable stretch and friction [2], or by learning offsets to correct
for robot end-effector positions and orientations [29], [6], [5].

Among the most relevant prior work, Peng et al. [7] recently
reported a data-driven calibration method for the Raven II [25].
They use three spheres and four RGB cameras to estimate
the position of the end effector. They collect a labeled dataset
of 49,407 poses including velocities and torques, and train
a neural network to predict the 3D position to within 1 mm
accuracy on an offline test set. In contrast to their work, we
consider the problem of estimating the joint configuration,
which can be incorporated more directly in collision checking,
and we also learn to predict the commanded input given a
history and desired joint angle. Additionally, we use both RGB
and depth sensing to track the sphere fiducials and consider
historical motions in the estimation of joint angles, which
enable compensation for hysteresis and backlash-like effects.
Furthermore, we design practical controllers using these
models and benchmark the result of applying the proposed
calibration procedure on a challenging peg transfer task.

III. PROBLEM DEFINITION

Let qp be the specification of the degrees of freedom, or
configuration, of the da Vinci Research Kit. Let Cp ⊂ R6 be
the set of all possible configurations, thus qp ∈ Cp. Let qc ∈ Cc
be the robot’s commanded configuration, where Cc ⊂ R6 and
is equivalent to the joint configurations measurable by the
robot’s encoders. Note that this differs from qp, because
the encoders are located at the motors and away from the
joints, which can result in a mismatch between the joint
configuration measured by the encoders and the true joint
configurations due to cabling effects. We use subscripts to
index specific joints in vectors, e.g., q>p =

[
qp,1 . . . qp,6

]
.

See Fig. 3 for visualization of joints q1, . . . ,q6. We suppress
the p and c subscripts when the distinction is not needed.
Let τt = (q(0)

c , . . . ,q(t−1)
c ) ∈ T encode the prior trajectory

information of the robot up to time t. In this work, we
assume that the robot comes to a stop in between commands,
due to the capture frequency of the Zivid depth camera used
to estimate joint configurations (Section IV-B). The goal of
this paper is to compute functions:

f : Cc×T → Cp

g : Cp×T → Cc,

where f (·) maps the current command at time t and prior
state information to the current physical state of the arm, and
g(·) maps the current physical state of the arm and its history
to the command that was executed at time t. The intent for
f (·) is to determine the physical configuration of a robot
given the commands that one sent to it. The intent for g(·) is
to derive commands to move the robot to a desired physical
configuration. At execution time, we would like to use the
controller derived from g(·) to track a reference trajectory of
target waypoints (q(t)

d )T
t=0 where q(t)

d ∈ Cp. We also consider
control generation via the forward model f by approximately
inverting it for a desired output waypoint. Observe that these
functions are history-dependent inverses of each other, i.e.,
g( f (q(t)

c ,τt),τt) = q(t)
c and f (g(q(t)

p ,τt),τt) = q(t)
p .

Complicating this objective is a significant sub-problem of
computing qp at any moment in time. While qc can be readily
determined by reading the encoders associated with each joint,
qp must be determined by other means. Additionally, because
enumerating the set of possible trajectories is intractable, we
estimate parametric approximations fθ ≈ f and gϕ ≈ g from

a finite sequence of samples D =
(
(q(t)

c ,q(t)
p )
)N

t=0
.

IV. METHOD

In this section, we describe methods to learn fθ and gϕ

from data and then use the learned models to more accurately
control the robot. We start by sending a sequence of qc and
tracking the physical trajectories of fiducial markers attached
to the robot. We then convert the marker’s positions to qp
using kinematic equations. After collecting several datasets
of qc and its resulting qp, we then train 13 models and
implement a controller.



Fig. 2: Using sphere fiducials to estimate the pose of the end effector.
We place two spheres on the shaft to obtain the wrist position and four on
the cross-shaped reference frame to find the orientation of the jaw. Yellow
circles and dots indicate the detected spheres and their center locations. The
green dotted lines show a skeleton of the estimated tool posture.

A. Sphere Position Detection Algorithm

To detect positions of spheres on the end effector,
Peng et al. [7] uses 4 RGB cameras and OpenCV image
processing functions, requiring 16 marker points to calibrate
the cameras. In this work, to estimate qp, we use an RGBD
camera to track fiducials of colored spheres attached to the
end effector (Fig. 2). By masking depth and color ranges, we
more robustly detect each of the spheres regardless of the
image background. We attach 4 spheres on the end effector to
ensure at least 3 are visible in case of occlusions. We mount
2 additional spheres on the tool shaft to decouple the first
3 joints from the last 3 and therefore to identify potential
coupling effects between joints. This also reduces the effect
of kinematic parameter inaccuracy on the joint estimation.
From the derived kinematic equations in Section IV-B, note
that q3 is the only joint that is affected by the kinematic
parameters L1 and Ltool (Fig. 3). We design and place the
six spheres where they cannot overlap in the camera image
within the working range of joints. We implement image
segmentation using functions from OpenCV [30].

With n 3D points (xi,yi,zi)
n−1
i=0 corresponding to each seg-

mented sphere obtained from the depth image, we formulate
the following least squares estimate Ac = b: x0 y0 z0 1

...
...

...
...

xn−1 yn−1 zn−1 1


︸ ︷︷ ︸

A∈Rn×4


c0
c1
c2
c3


︸ ︷︷ ︸
c∈R4×1

=

 x2
0 + y2

0 + z2
0

...
x2

n−1 + y2
n−1 + z2

n−1


︸ ︷︷ ︸

b∈Rn×1

to obtain c, and thus the center position pb of each sphere b:

pb =
[
xb yb zb

]>
=

1
2
[
c0 c1 c2

]>
,

with its radius as rb =
√

c3 + x2
b + y2

b + z2
b.

B. Configuration Estimation of Surgical Tool

To estimate configuration of the surgical tool from the
detected sphere positions, we define the kinematic parameters
following the modified Denavit-Hatenberg convention in
Fig. 3. We can obtain the joint angles qp,1, qp,2, and qp,3 in
terms of the position of the wrist joint 0

5p, which is measured
by extending two positions of the spheres on the tool shaft:

0
5p =

0
5x
0
5y
0
5z

=

 cos(qp,2) · sin(qp,1) · (Ltool−L1 +qp,3)
−sin(qp,2) · (Ltool−L1 +qp,3)

−cos(qp,1) · cos(qp,2) · (Ltool−L1 +qp,3)

 ,

Fig. 3: Coordinate frames using modified Denavit–Hartenberg conven-
tion. For i ∈ {1, . . . ,6}, the illustrated coordinate frame (xi,yi,zi) above
corresponds to qi as used in the text. We use the kinematic equations
described in Section IV-B to estimate the tool pose.

which gives

qp,1
qp,2
qp,3

=


arctan2(0

5x/−0
5 z)

arctan2(−0
5y/
√

0
5x2 +0

5 z2)√
0
5x2 +0

5 y2 +0
5 z2 +L1−Ltool

 ,
where Ltool is the length of the surgical tool.

The last three joint angles, q4, q5, and q6, can be computed
from the rotation matrix 0

fidR, which is obtained from the 4
fiducial spheres on the jaw as follows:qp,4

qp,5
qp,6

=

 arctan2(−r22/r12)
arctan2(−r31/r33)

arctan2
(

r32/
√

r2
31 + r2

33

)
 ,

where

r11 r12 r13
r21 r22 r23
r31 r32 r33

= 3
8R = (0

3R)−1 · 0
fid R,

where i
jR is a rotation from frame i to j. This gives us the

full procedure for getting all six joints.

C. Data Collection

To facilitate the data collection process, we first obtain the
transformation from the RGBD camera to the robot. While
the robot randomly moves throughout its workspace, we
collect the wrist positions 5porg using sphere detection and
compare them with the positions reported by the robot. We use
least squares estimation to match 684 sample points for the
different base frames to obtain a 4x4 transformation matrix.
In the data collection process, we generate a training dataset
containing pairs of desired and actual joint configurations of
the robot. We randomly sample end-effector positions of the
robot uniformly throughout a workspace of 100 mm x 80 mm
x 40 mm. We convert the positions to configurations for joints
q1, q2, and q3, and randomly sample configurations for q4, q5,



Fig. 4: Random Trajectories: We collect a dataset Drand of randomly
sampled configurations of the robot throughout its workspace for training.
We collect both the commanded (desired) joint angles and the physical joint
angles estimated from the fiducials.

and q6 within their respective joint limits. Then, we command
the robot to replay the executed trajectory with the sphere
fiducials attached. This enables us to collect ground truth
information for trajectories that are executed during a task.
During the process, we collect the configuration qp estimated
from the fiducials and commanded joint angles qc to compile
a dataset D:

D =
(
(q(t)

c ,q(t)
p )
)N

t=1
. (IV.1)

We collect the following training datasets:

• Random motions (Drand): This dataset consists of random
sampled configurations of the robot (Fig. 4). It takes 66
minutes to collect 4000 datapoints.

• Pick and place motions (Dpick): This dataset consists of
horizontal motions where the z coordinate of the end
effector is fixed and vertical motions where only the
z coordinate is varied (Fig. 5). It takes 31 minutes to
collect 1800 datapoints.

We collect test datasets in the same way that are 10 % the
size of the training datasets. Each dataset is collected over a
single run on the robot.

D. Error Identification

We conduct a preliminary study to identify the charac-
teristics of error and the coupling effect among joints. We
sub-sample a portion of the dataset from Section IV-C with
N = 270. We then replay the trajectory but keep the first 3
joint angles fixed. Fig. 6 presents the desired and measured
trajectory of each joint angle in both cases. We notice that
the three joints of the robot arm, qp,1, qp,2, and qp,3, rarely
contribute to the error compared to the last 3 joints, since the
root mean square (RMS) errors are 0.063 deg, 0.049 deg, and
0.255 mm respectively. The three joints of the surgical tool,
qp,4, qp,5, and qp,6, are repeatable and not affected by the arm
joints. In addition, results suggest that the last two joints are
closely coupled, since qp,5 synchronously moved with qp,6
even though it was commanded to be stationary, and vice
versa (Fig. 6). We hypothesize this occurs because these two
joints have two additional cables that extend together along
the shaft of the tool.

Fig. 5: Pick and Place Trajectories: We collect a dataset Dpick of pick and
place motions in the workspace. We use these motions to train a controller
specifically optimized for the peg transfer task (Section V-E).

Algorithm 1 Control Optimization Algorithm

Require: Target position q(t)
d , state estimator fθ , number of

iterations M, learning rate α

1: q(t)
c ← q(t)

d
2: for j ∈ {1, . . . ,M} do
3: ∆ j← q(t)

d − fθ (q
(t)
c ;τt)

4: q(t)
c ← q(t)

c +α∆ j

5: return q(t)
c

E. State Estimation Without Attached Fiducials

To estimate qp without the fiducials attached, we propose
training a function approximator fθ : Cc × T → Cp, such
that fθ (q

(t)
c ,τt) = q̂(t)

p ≈ q(t)
p . We also train an inverse model

gϕ(q
(t)
p ,τt) = q̂(t)

c ≈ q(t)
c , where θ and ϕ represent the param-

eters of the learned models. In Section V-B, we investigate
training fθ and gϕ using linear regression and deep neural
networks of differing architectures and prior state inputs.

F. Controller Design

Once we train function approximators, we would like to
apply them to accurately control the robot while compensating
for the robot’s cabling effects. Since the learned inverse
model gϕ estimates commands, it can be used directly for
this purpose. However, as we show in Section V, in some
cases we can more accurately position the robot using the
forward model as a basis for a controller. This controller
takes as input the target joint configuration q(t)

d and computes
joint configuration command q(t)

c to get the robot to that
configuration. The algorithm for this controller (Alg. 1)
iteratively refines the command based on the error relative
to the target position. The algorithm evaluates the forward
dynamics fθ for an input command to obtain an estimate of
the next configuration fθ (q

(t)
c ;τt). Then, the algorithm guides

the commands to compensate for the error relative to the
target position. This process is repeated for M iterations.

V. EXPERIMENTS

We evaluate the performance of the proposed methods on
a dVRK robot [1]. The dVRK consists of two cable-driven,
7-DOF arms called patient-side manipulators (PSMs) that
can be teleoperated by operating master tool manipulators



Fig. 6: Top row: We observe that the tool joint angles qp,4, qp,5, qp,6 are not affected by the movement of the external robot arm qp,1, qp,2, qp,3. The RMSE
value are [qp,4,qp,5,qp,6] = [10.7,11.0,20.6] and [10.0,11.9,19.9](deg) before and after fixing the external arm. Bottom row: Two wrist joint angles, qp,5
and qp,6, are closely coupled to each other. Joint q6 moved in correspondence to qp,5 despite its desired command was fixed as constant, and vice versa.

(MTMs) or commanded programmatically. We use the Zivid
OnePlus RGBD camera to track the sphere positions on the
arm and end effector, which can provide 1920x1200 pixel
images at 13 frames per second with depth resolution 0.5 mm.

A. Evaluation of Measurement System

To evaluate the accuracy of the measurement system, we
fabricate 4 fiducial parts of different heights. We randomly
configure them on precisely drilled surface plates at regu-
lar intervals. The measurement error is calculated by the
difference between the sphere distances from the proposed
detection method and the distances from the CAD model,
which is considered as ground-truth. As a result of measuring
120 samples, we obtain a (0.32±0.18) mm RMS error in
single sphere detection. Within a range of the maximum
error of 0.67 mm, we add a uniform distribution of noise
to the detection of six spheres and estimated joint angles
of the robot. The results of the measurement resolution are
summarized in Table I. The accuracy of the measurement
system is comparable to commercial 3D tracking systems
including Aurora (0.48–0.70 mm) and Polaris (0.25–0.30 mm)
from NDI Medical, and the detection using multiple RGB
cameras (0.99 mm) [7].

TABLE I: Accuracy of Measurement System

Sphere Joint angle

3D position
(mm)

q1
(deg)

q2
(deg)

q3
(mm)

q4
(deg)

q5
(deg)

q6
(deg)

RMS 0.32 0.022 0.022 0.42 0.34 0.35 0.59

SD 0.18 0.022 0.022 0.42 0.34 0.35 0.59

B. Modeling Approaches

In this section, we consider 13 learned models to estimate
the ground-truth joint configuration and end-effector pose of
the arm. We collect a large dataset of random motions and
pick-and-place motions as described in Section IV-C. We also
generate similar but smaller datasets as a validation set. All
models are implemented in PyTorch [31] and trained using
the MSE loss function and predict the three wrist joint angles

q̂(t)
p,4:6. The first three joints are not predicted or used as input,

as we find they are very accurate and decoupled from the
wrist joints as shown in Fig. 6 and discussed in Section IV-D.
We compute pose error by computing the forward kinematics
of the arm using the new joint estimate. We investigate the
following modeling choices for the forward model fθ :
1) Architecture: We consider the following candidate archi-
tectures for fθ :

Linear: A linear regression from input to output using
`1 regularization.
FF: A feed-forward neural network with two hidden
layers, with each hidden layer having 256 units.
RNN: An LSTM [32] with 256 units, followed by a
feed-forward neural network with two hidden layers of
256 units. Recurrent neural networks such as LSTMs
maintain a hidden state, which we hypothesize may
better capture history dependent errors.

2) Input Format: To capture the history-dependent nature of
cabling effects, we track a history of horizon H > 1 and use
it to form two possible input formats:

Cmd: (xc) is the prior commanded joint positions.
Est: (xe) is the prior predictions and current desired
joint position.

Thus, the input takes one of the following forms:

xc =


q(t)

c,4:6

q(t−1)
c,4:6

...
q(t−H)

c,4:6

 , xe =


q(t)

c,4:6

q̂(t−1)
p,4:6

...
q̂(t−H)

p,4:6

 . (V.1)

We use xt to denote a input in one of these forms. At training
time, we use the ground-truth q(t)

p,4:6 in place of the estimated

q̂(t)
p,4:6 to avoid compounding modeling errors. For the LSTM,

each element of xt is supplied individually in a sequence.
3) Output Format:

Abs: q̂(t)
p,4:6 = fθ (xt): the model directly predicts the

absolute joint angles
Delta: q̂(t)

p,4:6 = fθ (xt)+ q(t)
c,4:6: the model predicts the

error of the robot’s estimate.



Fig. 7: Forward Model Horizon Ablation In this experiment, we ablate
the input horizon H with respect to the models in Section V-B on Dpick. We
observe that the RNN model with the command as the input and predicted
error as the output outperforms the other models, and roughly converges
in performance around H = 4. We observe that all models improve with
a nonzero horizon, implying that temporal information is necessary to
compensate for hysteresis, cable stretch, and backlash-like effects. We train
each model 5 times, reporting the mean and standard deviation.

Fig. 8: Inverse Model Horizon Ablation We ablate the input horizon H
with respect to the inverse versions of the models in Section V-B on Dpick.
We observe convergence in performance around H = 4 using an RNN model
with the command as the input and predicted joint angles as the output. We
train each model 5 times and report the mean and standard deviation.

For the inverse model gϕ , we perform the same search
where q(t)

c is replaced by q(t)
p in the input and the model

predicts q̂(t)
c . Because q(t)

p is not predicted by this model,
we only use the xc input format. We use the above codes
sequentially to refer to specific models (e.g. RNN-Cmd-Delta).
For the linear model, we use a LASSO linear regression [33].
and observe that regularization produces more stable results
than vanilla least-squares.

C. Offline Positioning Performance

We ablate all forward models in Section V-B offline with
respect to H (Fig. 7) and find that the validation mean-squared
error (MSE) of most models start to converge around H = 2,
which suggests that some temporal information is necessary
to compensate for cabling effects. We also ablate all inverse
models considered in Section V-B with respect to H on Dpick
and find that the model 5 has the smallest validation MSE
at H = 4 (Fig. 8). Based on these results, we select model
RNN-Cmd-Delta as the best forward model design and model
RNN-Cmd-Abs as the best inverse model design. Hereafter,
we refer to these specific models when we refer to the forward
and inverse models. To increase robustness, we ensemble 10
of these models when designing controllers.

D. Trajectory-Tracking Task

In this experiment, we evaluate the controller described in
Section IV-F on a trajectory-tracking task, where the objective

Fig. 9: Cumulative Geometric Probability for Pick-and-Place Accuracy
Without the model, the end effector reaches within 1 mm of the desired
physical location for 4.0 % of pickups. With the model for correction, the
robot ends within 1 mm desired location 87.8 % of the time. For 2 mm, this
increases from 14.1 % to 95.9 %.

Fig. 10: Left: Blocks, pegs, and pegboard are all red to simulate a surgical
setting. Blocks are detected using depth masking. Right: Detected blocks
are shown in yellow and bordered green, while grasp points are shown in
red. The bordered green without block indicates the estimated placing pose.

is to guide the robot along a desired target trajectory (q(t)
d )T

t=0,
by commanding it to the current timestep’s waypoint. We
evaluate the performance of various controllers on a sequence
of unseen pick and place trajectories. The controllers are
trained on either Drand or Dpick to measure the effect of
distributional mismatch between the training data and target
trajectories. For the forward model, we use α = 0.5 and
M = 3. Because we only calibrate the wrist joints, we evaluate
using ground-truth information for qp,1:3. We find that the
compensatory model can reduce the mean tracking error of the
physical robot from 2.96 mm to 1.90 mm training on Drand,
and to 0.65 mm training on Dpick (Table II).

E. FLS Peg Transfer Task

We evaluate the proposed approach on a variant of the
FLS peg-transfer task, in which the robot transfers 6 blocks
from pegs on the left side of a pegboard to pegs on the
right side, and then transfers them back (Fig. 10). We do
not consider arm-to-arm handover from the original task. We
use the monochrome setup from Hwang et al. [4] with 2
changes: (1) we 3D print the board red instead of painting
it red to avoid issues with sticking pegs and (2) we install
springs at the bottom of the board to avoid potential hardware
damage to the dVRK. Incidental contact with the pegboard
causes a change in pose of the pegs, so after each pick-and-
place attempt, we capture a new RGBD image and regenerate



TABLE II: Physical pick-and-place accuracy: We compare 3 different controller designs on Drand and Dpick and evaluate their accuracy on a sequence of
previously unseen test pick-and-place motions on the dVRK. We observe that the forward model-based controller is the most accurate on average. Results
suggest the mean tracking error is improved by training on trajectories that are similar to those executed during the task.

Cartesian Distances (mm) Uncalibrated Linear Inverse RNN Inverse RNN Forward
Training Dataset — Drand Dpick Drand Dpick Drand Dpick

Max 6.20 5.90 4.74 5.68 2.61 5.29 2.79
Min 0.51 0.21 0.20 0.13 0.11 0.11 0.18
Mean 2.96 2.58 1.34 2.57 0.97 2.05 0.65
Median 2.89 2.48 0.95 2.47 0.92 1.90 0.55
Standard deviation 1.19 1.14 1.05 1.15 0.60 1.21 0.44

TABLE III: Peg-Transfer Task Experiments: We evaluate the learned controllers on 10 trials of the handover-free FLS peg-transfer task. We observe that
the baseline successfully transfers the block in 39.4 % of its attempts, while the forward model trained on random trajectory data is able to successfully
transfer the block in 69.2 % of its attempts. The forward model trained on task-specific insertion data is able to complete 96.7 % of attempted transfers.
Because the task involves transferring 6 blocks to the other side and transferring them back, each block is transferred twice. If a block’s first transfer fails, it
cannot be transferred again, so some runs may have fewer than 12 transfer attempts. The task-specific forward model never makes an error in the first wave.

Model Dataset Mean Transfer Time (s) Pick Failure Stuck Fall Success / Attempts Success Rate (%)
Baseline — 10.0 90 3 10 67/170 39.4
RNN Forward Drand 12.9 58 1 6 146/211 69.2
RNN Forward Dpick 13.6 0 2 6 232/240 96.7
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Fig. 11: View of the A matrix from linear regression. Each table shows a
single row of A reorganized to visualize the command and history effects on
output command, with the target command in the first row, and the history
of commands in subsequent rows. Rows of A for joints q1 and q2 are not
included as they contain a single 1.0 in mapping qd,· to qc,·, similar to the
0.93 for q3 in (a). Joints q4 (b), q5 (c), q6 (d) experience hysteresis which
is observable by the effect previous commands on the output. Joints q5 (c)
and q6 (d) are coupled, shown by their effects on each other.

the trajectory. We evaluate the uncalibrated robot, forward-
model controller, inverse-model controller, and linear-inverse-
model controller on this task. We find that without calibration,
the robot succeeds on 39.4 % of individual transfers. With
calibration on random trajectory data, the robot succeeds on
69.2 %. With calibration on pick-and-place data, the robot
succeeds on 96.7 %. It is promising that using calibration
results in a success rate that is comparable to that of an
expert human surgical resident (95.8 %) [4] on the FLS
peg-transfer task with a different setup. This also suggests
matching the distribution of trajectories used for training
with the distribution encountered at test time can yield better
compensation (Table III).

F. Linear Regression Analysis

To gain insight into the cabling effects on joint coupling
and hysteresis, we inspect the linear regression model. This
model takes the form glin(xt) = Axt +b. Fig. 11 shows the
values in A from a LASSO regression on a training dataset.
From the matrix, we observe that joints 1, 2, and 3 depend

only on the target angle for that joint and not on another
command or history. Joint 4 exhibits some hysteresis as qc,4 is
function of both the qd,4 and the command history. Joints q5
and q6 exhibit both hysteresis and joint couplings as their qc
is tied to the qd and the command history of both joints. The
linear regression results match our observations, and suggest
why history-dependent models do better than baseline.

VI. CONCLUSION AND FUTURE WORK

We presented an efficient method for calibrating to the
hysteresis and coupling effects of cable-driven surgical robots.
The method tracks fiducial markers with an RGBD camera to
build a dataset from which we learn a model. With a controller
based on this model, we perform the FLS peg-transfer task
with a success rate that suggests that this method can improve
precision over baseline.

In future work, we will apply the proposed calibration
method to improve accuracy for other surgical tasks such
as cutting, debridement, and peg transfer with hand-overs.
One limitation of this work is that it requires a dataset of
trajectories for a specific arm and instrument. To overcome
this limitation, we will investigate the application of meta
learning [34] to rapidly adapt to a new instrument or arm
using a limited dataset by leveraging a large meta-training
dataset generated from a set of arms and instruments. While
we did not notice issues with drift over time so far, we will
also study how the robot’s dynamics change over longer
periods of time. We will also investigate using the method to
calibrate two PSM arms for multilateral surgical manipulation
tasks.
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