
A Cloud Robot System Accessing Learned Grasps from Dexterity
Network 1.0 and Berkeley Robotics and Automation as a Service (Brass)

Nan Tian*,1,2 Matthew Matl*,1 Jeffrey Mahler,1 Yu Xiang Zhou,2,3 Samantha Staszak,1 Christopher Correa,1

Steven Zheng,1,2 Qiang Li,2 Robert Zhang,2 Ken Goldberg1

Abstract— Robotics and Automation as a Service (RAaaS),
the robotics-equivalent of Software as a Service (SaaS), can
serve as an important component in a cloud robotics framework
by avoiding complex software installation and maintenance,
reducing application development time, and facilitating sharing
of data. However, RAaaS may introduce network latency
and security issues. This paper describes an implemented
RAaaS system architecture and reports on physical grasping
experiments. The system uses Berkeley RAaaS Software (Brass)
to remotely host an instance of Dex-Net 1.0, a robust grasp-
planning system that samples grasps on 3D object meshes and
computes stochastic robustness metrics for each grasp. The
system links a local ABB YuMi human-safe robot with Brass
via a cross-border, secure, and low-latency network provided
by Cloudminds, Inc. We study grasp performance under this
architecture by programming the YuMi to grasp and lift a
set of non-standard, asymmetric chess pieces. Results suggest
that the RAaaS system can provide significant improvements in
grasp robustness with reasonable mean network latency times
of 30ms and 200ms for servers 500 and 6000 miles away from
the robot, respectively.

I. INTRODUCTION

“Cloud Robotics and Automation” describes robots and
automation systems that share data, re-use code, and per-
form necessary but expensive computation on remote cloud
servers. It builds on emerging research in Cloud Computing,
Deep Learning, and Big Data and government/industry ini-
tiatives such as the “Internet of Things”, “Industry 4.0”, and
“Made in China 2025”.

In earlier work [1], we proposed the concept of Robotics
and Automation as a Service (RAaaS), the robotics-
equivalent of Software as a Service (SaaS) – a model in
which software components are hosted on central cloud
servers and made available to end users and robots over
the internet. Other internet-based software services, such
as GMail and Google Docs, facilitate software installation,
allow for centralized software maintenance and upgrades,
and promote the sharing of data and the parallelization
of computation within cloud datacenters. However, these
benefits come at the cost of network latency and security
concerns.

The AUTOLAB at Berkeley (automation.berkeley.edu)
This research was performed at the AUTOLAB at UC Berkeley in

affiliation with the AMP Lab, BAIR, and the CITRIS “People and Robots”
(CPAR) Initiative: http://robotics.citris-uc.org.

1University of California, Berkeley, USA; {neubotech, mmatl,
jmahler, samstaszak, goldberg}@berkeley.edu

2Cloudminds Technology Inc.;robert@cloudminds.com
3CMU School of Computer Science;
*Both authors contributed equally to this work

Fig. 1. Block Diagram of BRASS (Berkeley RAaaS Software)
Framework: (Top) Brass webserver and associated robotics services, like
Dex-Net. (Center) Cross-Border Network that connects Brass to local
systems. (Bottom) Local robot command unit (RCU) for querying Brass
and controlling robots.

Under a RAaaS framework, similar benefits and draw-
backs exist. Developers of robotics software would be able to
access useful tools like path planning, object recognition, and
robust grasp planning through web-based interfaces, which
would reduce development time, allow end users to receive
instant updates when algorithms are improved in the cloud
service, and enable robots to take advantage of the significant
computational and data storage resources that the cloud
offers. However, network latency could hamper the execution
of time-sensitive robotic tasks, and security becomes a larger
concern – especially when physical robots are involved.

This paper reports on the architecture of an implemented
RAaaS system and results from experiments that explore
the costs and benefits of using such a system. Berkeley
RAaaS (Brass) currently includes the Dexterity Network
(Dex-Net 1.0), a robust grasp planning package. Dex-Net
includes a database of over 10,000 3D object models and uses
over 1500 cloud computing nodes to perform Monte-Carlo
integration to pre-compute stochastical robustness properties
for thousands of parallel-jaw grasps per object [2]. End-
users can connect to Brass via a standard network or through
the proprietary new Cloudminds cross-border, secure, low-
latency network. Once a connection is established, a robot
can retrieve hundreds of grasp candidates and their associated
robustness metrics from Dex-Net to use as a guide for plan-

automation.berkeley.edu


ning manipulation tasks. Because robust grasp locations are
pre-computed and stored in the cloud, Dex-Net can empower
robots with very limited memory and computing resources
to manipulate the complex objects encountered in tasks such
as warehouse order fulfillment and home decluttering.

As examples of parts that are non-trivial to grasp, we
use a set of six asymmetric, non-standard chess pieces
downloaded from Thingiverse [3] (see Figure 2, bottom).
The experimental setup uses an ABB YuMi bilateral human-
safe robot to manipulate the chess pieces, and the YuMi’s
controller accesses Dex-Net’s grasp recommendation system
through Brass to facilitate robust grasp planning.

Although it is of course possible to pre-fetch several
hundred robust candidate grasps for each of the six unique
chess pieces from Dex-Net and store them locally, it is not
possible to pre-fetch the grasps for every object encountered
in a warehouse or home. The six chess pieces thus serve as
examples of parts that could be encountered and for which
robust grasps would be requested over the cloud.

We analyze how using Dex-Net through Brass affects
grasp reliability and repeatability when compared against
local, hard-coded grasping movements along the x and y
axes of the chessboard that do not take piece geometry into
account. We compare network latency and variance for Brass
in three locations: on site, 500 miles away in an Amazon EC2
instance, and 6000 miles away in China.

II. RELATED WORK

The concept of cloud robotics and automation can be
traced back at least two decades to the advent of “Networked
Robotics” [4]. In 1997, Inaba et al. described the advantages
of using remote computing for robot control [5], and in
2001 the IEEE Robotics and Automation Society established
the Technical Committee on Networked Robotics [6]. Work
continued throughout the decade, and in 2009 the RoboEarth
project envisioned the construction of “a giant network and
database repository where robots can share information and
learn from each other about their behaviour and environ-
ment” [7], [8]. This project developed cloud computing
resources for generating 3D models of environments, speech
recognition, and face recognition [9], and the idea of using
the cloud for computation and data aggregation in robotics
continued to pick up traction. In 2010, James Kuffner first
used the term “Cloud Robotics” to describe the increasing
number of robotics or automation systems that rely on remote
data or code for effective operation [10]. Since then, a wide
variety of models for connecting robots to the cloud have
been developed, implemented, and tested [1].

Some, like RoboEarth’s Rapyuta system [11], offer se-
cure, optimized platforms in the cloud for offloading robotic
computational tasks. These Platform as a Service (PaaS) sys-
tems do not offer robotic services explicitly, but instead make
it easier for developers to push existing code into the cloud
for parallelization. Adoption of PaaS systems is made easier
by the ubiquity of ROS, the Robot Operating System [12].
Individual computational units in ROS are organized into
nodes that communicate via the ROS messaging protocol,

Fig. 2. (Top) The YuMi robot replaying the classic 1997 chess game where
IBM’s Deep Blue defeated world champion Garry Kasparov. (Bottom) CAD
model renderings of standard chess pieces and the equivalent non-standard
“Wizard” pieces.

and moving these nodes to a remote PaaS server is easy.
However, these remote nodes are not available as shared
services for public users.

On the other hand, some systems have adopted a SaaS-like
model for robot motion planning. Vick et al. moved a robot
motion controller into the cloud and used it for manipulation
planning [13], and Zieliński et al. created a system that
provides cloud-hosted task planning agents for exploratory
robots [14]. Additionally, Bekris et. al explored the tradeoff
between path quality and computational efficiency for a
cloud-based motion planner for industrial grippers [15].
In the realm of robotic mapping, the DAvinci framework
offered a highly-parallelized implementation of FastSLAM
in the cloud and allowed many robots to share generated
environment maps through a SaaS model [16].

Brass builds on ideas from these SaaS-style frameworks
as well as related work on robotic grasping systems. In
particular, Brass directly uses Dex-Net 1.0 [2] as a service
and draws inspiration from Ben Kehoe’s work on cloud-



based robotic grasping, which used a variety of cloud-
hosted services like the Google Object Recognition Engine,
OpenRAVE, and the Point Cloud Library in an integrated
object manipulation pipeline [17], [18]. Additionally, Brass
is based on several ideas from Arjun Singh’s dissertation on
benchmarks for cloud robotics [19].

Our work is also closely related to robust grasp planning.
For a review of grasping, see Bicchi and Kumar [20]. Early
research on grasp planning focused on maximizing analytic
quality metrics such as force closure [21] or the Ferrari-
Canny metric (also known as epslion metric) [22]. However,
these metrics depend on precise knowledge of geometry,
material properties, contact locations, and surface normals,
which may not be known due to imprecision in sensing
and control. This motivated the development of robustness
metrics, which measure the expectation of quality metrics
under uncertainty in variables such as object pose and
friction [17], [23], [24]. Since evaluating robustness may
be computationally expensive, recent research has studied
reducing the number of samples required, for example by
using Multi-Armed Bandits (MAB) [25]. Recently, Mahler
et al. [2] developed Dex-Net 1.0, a cloud-based dataset of
over 10,000 3D models annotated with parallel-jaw grasps
and robustness metrics, and showed that this dataset could
be used to accelerate robust grasp planning with MAB.
Another approach is learning a predictive model of grasp
robustness from featurizations such as heightmaps [26] or
depth images [27]. In this this work we access robust grasps
computed by Dex-Net 1.0 over a network and study their
success on a physical system.

III. SYSTEM DESIGN
Our experimental setup consists of the five primary com-

ponents listed below (Figure 1):
1) A local dual-arm ABB YuMi robot. This robot receives

commands and executes commanded motions to ma-
nipulate objects.

2) A robot command unit (RCU). The RCU plans chess
moves, makes requests to Brass over the internet to
retrieve suggested grasps, and sends motion commands
to the robot.

3) A proprietary new cross-border network service. This
network is global, secure, and provides low latency,
and it is used to connect the local RCU to Brass.

4) Brass, a server that exposes a universal API to clients.
Internally, Brass starts up instances of the services it
offers, performs queries to each of those services when
a web request arrives, and coordinates responses to
clients.

5) An instance of Dex-Net 1.0, run within Brass. Dex-Net
is a service for robust grasp planning that takes as input
an RGBD image of an object, matches it to similar
objects, and returns a set of pre-computed parallel-jaw
grasps ranked by robustness. It currently includes over
2 million grasps for 10,000 object models [2].

Each of these components is described in more detail
below.

Fig. 3. (Top) Parallel-jaw grasp configuration candidates generated by
Dex-Net ranked by robustness (probability of force closure). The left image
shows the grasp axis for the 15 most robust grasps, at right are the 200
most robust grasps. (Bottom) The left image shows the most robust grasp
for the rook piece, while the right shows that grasp being executed by the
YuMi robot gripper.

A. Dual-Arm YuMi Robot

In experiments, an ABB YuMi was used as the local robot.
This robot has a pair of 7-DOF arms, each of which can move
at a rate of 1500mms−1 with sub-millimeter repeatability
and can carry a payload of up to 250 g. Each arm is equipped
with a parallel-jaw gripper whose jaws are 5 cm in length
and can open to 10 cm apart. Furthermore, the robot is
human-safe in compliance with ISO/TS 15066, which means
that its controller will immediately stop each arm within
milliseconds of contacting a human or any other part of
the robot itself. The YuMi was designed for manipulating
small parts in collaboration with humans, which makes it
an excellent candidate for applications with human-robot
interaction (HRI) [28] or humans in proximity.

In our experimental setup, we use the YuMi’s ethernet
service port to stream RAPID commands for controlling its
arms, and we use YuMi’s built-in inverse kinematic solver
for planning joint angles.

B. Robot Command Unit (RCU)

The robot command unit, or RCU, is the mid-level soft-
ware component that creates task plans and then utilizes
Brass to plan lower-level commands for controlling the YuMi
robot. The RCU’s task planner parses a series of chess moves
from a PGN-format chess game file and then begins to
execute them sequentially. Throughout the game, the RCU
keeps track of each piece’s position on the chess board.



When a move is processed, the RCU identifies the target
piece and then queries Dex-Net via Brass to retrieve candi-
date grasps for that piece. These grasps are parametrized
by a center point in R3 that lies halfway between the
target locations of two gripper jaws and an axis in S2 that
points from one jaw tip to the other. Additionally, each
grasp is returned with its probability of force closure under
uncertainty in object pose, gripper pose, and friction, which
serves as our primary quality metric for each grasp.

To reduce the probability of collisions with other pieces,
the RCU constrains the YuMi to grasp pieces from directly
above so that the gripper jaws are perpendicular to the table.
These grasps can be represented as a rotation of the jaws
around the z-axis and a translation of the gripper. From this
parametrization, the RCU can directly command the YuMi’s
built-in motion planner to execute the grasp, lift the piece,
and place it in its target location.

C. Cross-Border Network Service

To connect a local RCU to Brass and its services, we
use Cloudminds, a new proprietary, secure, low-latency,
global network designed to send files rapidly and securely
across great distances. This network differs from traditional
networks in two primary ways. First, it has control over all
routers and access points within its range of service. Second,
the network requires every user to authenticate before use so
that every packet can be traced back to its owner.

This network has demonstrated a 10 to 100 times increase
in throughput for long-distance file transfers when compared
to traditional global networks. However, robotics applica-
tions are generally more sensitive to latency, reliability, and
security than throughput. In our chess-playing experiments,
typical Brass packets containing Dex-Net grasp recommen-
dations are roughly 33 kB in size, so throughput is not a huge
concern. However, latency directly affects the responsiveness
of the robot.

The Cloudminds’ Cross-Border Network achieves signif-
icant improvements in latency by optimizing the number
of hops and distance traveled during routing. The system
is also more reliable, as it uses advanced traffic control to
handle congestion and packet drops. Furthermore, mandatory
authentication makes it much more secure and more resilient
to router attacks than traditional networks. Any denial-of-
service attack launched on one of the network’s routers
will be ineffective, as packets from unauthorized sources are
simply dropped.

D. Brass

Brass is a custom experimental webserver that presents
a generic API for robotic services over the internet. By
presenting a uniform, well-defined API, Brass abstracts away
the complexities of its internal services and enables end-users
to build code against a stable interface. Internally, Brass starts
up an instance of each of its services and connects to them
using their own built-in communication protocols. When
a request arrives, Brass queries these services, aggregates
results, and returns them to the client in a well-defined

Fig. 4. Visualization of optimal Dex-Net grasps selected by Brass. (top)
king, bishop, rook (bottom) queen, knight, pawn. When these grasps are
executed, the axis shown is projected onto a plane that contains its center
point and is parallel to the table. The object frame is defined as negative
y-axis is the direction that the pieces are facing, and positive x-axis is from
right of the piece to the left.

format. Each request contains an object identifier, and Brass
will return either a raw list of Dex-Net’s suggested grasps
for that object, sorted by their probability of force closure,
or a single grasp that Brass selects from that set by applying
filters specific to the chess-playing task.

This filter eliminates grasps where the grasp axis is not
nearly parallel to the game board and prioritizes grasps
whose center point is close to the vertical line that passes
through the object’s center of mass to minimize gravitational
torque on the piece when it is lifted. The filter also removes
grasps that are too close to the table as they risk collisions
between the top of the piece and the palm of the YuMi
gripper. The steps in this filtering process are described as
follows:

1) Filter out grasps whose probability of force closure is
below 30% of the highest probability of force closure
over all grasps.

2) Filter out grasps that are within 10mm of the work-
surface to avoid collisions with the YuMi gripper.

3) Filter out grasps whose center point is more than 5mm
from the line that runs through the piece’s center of
gravity perpendicular to the table.

4) From the remaining grasps, choose the grasp whose
axis is most parallel to the table.

Application of these filtering steps led to the selection of
grasps shown in Figure 4.

When accessing Brass, the RCU makes HTTP requests
and the resulting grasps, parametrized by a center point and
a grasp axis vector, are returned to the RCU as a JSON
structure.



E. Dexterity Network

Dex-Net 1.0 is a robust cloud-based grasp-planning service
[2]. Given a particular object’s 3D mesh model, Dex-Net
computes all stable poses for the object on a planar work-
surface using static analysis [29]. Then, Dex-Net generates
thousands of grasp candidates for each registered gripper
type using a multi-armed bandit model to leverage prior
grasps for increased sampling efficiency. Individual grasps
are represented as a center point and a 3D vector that
indicates the axis between the jaws. Finally, robustness
metrics, such as probability of force closure [30] and
expected Ferrari-Canny quality [31] [32] are computed for
each grasp under uncertainty in object pose ξ, gripper pose
ν, and friction coefficient γ, and these metrics are stored
with each grasp for later access.

The grasp sampling and metric calculation processes are
computationally expensive, requiring 10-15 minutes on a
standard desktop, so Dex-Net takes advantage of cluster
computing and uses 1500 nodes to pre-compute grasps. Dex-
Net currently stores data for over 10,000 unique objects,
which amounts to over 2.5 million grasp candidates. Dex-Net
can then serve these pre-computed grasps over the internet
via Brass in small, kilobyte-sized packages. This means that
nearly any system – even ones constrained heavily in both
memory and computational power – can use Dex-Net to plan
robust grasps for thousands of objects.

In this work we model object pose as a zero-mean Gaus-
sian over SE(3) ξ = exp(v∧) [2] with rotational uncertainty
of 0.01 radians and positional uncertainty of 1.0cm, where v
is a member of the Lie Algebra. We modeled gripper pose as
a zero-mean Gaussian over SE(3) with rotational uncertainty
of 0.001 radians and positional uncertainty of 0.1cm, and we
modeled γ ∼ N (0, 0.1), truncating γ to be in [0, 1] using
rejection sampling. The values were chosen based on the
robot specification and the material properties of the gripper
and objects.

For these experiments, the 3D mesh model for each chess
piece was added to Dex-Net and grasps were pre-computed
before the experiments were initiated.

IV. EXPERIMENTS AND RESULTS

To evaluate the use of Dex-Net via Brass, we set up a
series of experiments to determine how using Dex-Net affects
grasp robustness and how serving Dex-Net grasps via Brass
from remote servers affects latency.

A. Individual and Sequential Grasp Success With and With-
out Dex-Net

Our first set of experiments was designed to evaluate if
access to Dex-Net via Brass improves grasp quality and
robustness. The experiments are divided into two scenarios:

1) Dex-Net is not used. Instead, grasps are identical for
all pieces, with axes between the gripper jaws placed
parallel to either the x-axis or y-axis (y-axis is in the
direction where each piece is facing, whereas x-axis
runs from left to right through each piece).

2) Dex-Net is used via Brass to provide robust grasp
candidates. Brass performs grasp filtering to provide
the RCU with a single target grasp.

For each scenario, we ran two experiments. First, we
attempted to grasp each piece 50 times and move it from a
start square to a target square. This experiment was designed
to characterize the probability of correctly manipulating each
individual piece under each of the listed scenarios. An at-
tempt was considered successful if the piece was successfully
lifted from its start square and placed in the target square
without being dropped or knocked over. After each test, the
target piece was re-registered in its start square, with its
center of mass placed directly above the center of the square.
The results from these experiments are displayed in Table I.

TABLE I
GRASP SUCCESS RATES (PERCENTAGE) OVER 50 ATTEMPTS

Hardcoded x-axis Hardcoded y-axis Dex-Net

King 94 100 100
Queen 84 100 98
Rook 96 98 100
Bishop 98 72 98
Knight 100 100 100
Pawn 94 76 100

TABLE II
AVERAGE NUMBER OF CONSECUTIVE SUCCESSFUL MOVES AND

(PARENTHESIS) NUMBER OF INTERRUPTIONS WITHIN 50 CHESS MOVES

Hardcoded x-axis Hardcoded y-axis Dex-Net

King 12.5 (3) 50.0 (0) 50.0 (0)
Queen 5.0 (9) 50.0 (0) 50.0 (0)
Rook 16.7 (2) 25.0 (1) 25.0 (1)
Bishop 25.0 (1) 3.1 (15) 25.0 (1)
Knight 50.0 (0) 50.0 (0) 50.0 (0)
Pawn 12.5 (3) 3.9 (12) 25.0 (1)

Next, we attempted to play through 50 consecutive moves
with each piece. Whenever a grasp failed, we re-registered
the piece in its target square before allowing the sequence to
continue. The mean number of moves between failures and
the total number of failures during each 50-move sequence
are shown in Table II. For a Bernoulli random variable with
probability of success p, if all trials are independent, the
number of expected consecutive successful trials is 1/(1−p).
Our data is somewhat consistent with this model but there
is some dependency between consecutive grasps since small
errors in part position and orientation accumulate.



Fig. 5. Block diagrams for four experimental network scenarios. In case 1, both Dex-Net and the RCU are served locally. In case 2, Dex-Net is served
from an Amazon EC2 instance in Oregon and is accessed over an ordinary network. In case 3, Dex-Net is hosted on a server in China and is accessed via
an ordinary network. In case 4, Dex-Net is also hosted on a server in China and is accessed via the Cross-Border Network.

TABLE III
ROUND-TRIP TIME TO RECEIVE GRASPS FROM DEX-NET

Mean (ms) Variance (ms)

Local 0.11 0.0011

Oregon, EC2 31.50 0.0018

China, normal net 303.10 54.2180

China, cross-border net 197.03 0.3239

B. Chess Movement Time vs. Network Latencies

Our next set of experiments was designed to measure the
effect of moving Brass and Dex-Net away from the robot
and hosting them on remote servers. These experiments were
performed for four primary scenarios (see Figure 5):

1) Brass, Dex-Net, and the RCU are all deployed on a
local machine directly connected to the YuMi.

2) Brass and Dex-Net are deployed on an Amazon EC2
instance in Oregon, while the RCU remains directly
connected to the robot. An ordinary ISP’s network is
used for packet transportation.

3) Brass and Dex-Net are deployed on a server in China,
and the RCU is still hosted locally. An ordinary ISP’s
network is used for packet transportation.

4) Brass and Dex-Net are deployed on a server in China,
and the RCU is still hosted locally. Cloudminds’ Cross-
Border Network is used for packet transportation.

For each scenario, we benchmarked the round-trip time to
perform a Dex-Net query via TCP/IP. Each query contained
the name of a particular piece, and each response contained
a raw list of Dex-Net’s pre-computed grasps for that piece
in JSON format. Responses were generally around 33 kB in
size. One hundred trials were performed per scenario, and

the mean and variance for each are shown in Table III.

V. DISCUSSION AND FUTURE WORK

Grasp performance for three of the chess pieces was excel-
lent across all methods, but grasp performance for the pawn,
bishop, and the rook was significantly better with Dex-Net
than without. These experiments suggest that utilizing Dex-
Net via Brass transforms the system from nearly unusable
to fairly robust at a relatively mild cost in terms of network
latency.

However, this cost must be explored, since network latency
is an important consideration for cloud-enabled robots. For
time-sensitive on-line and real-time applications, large laten-
cies for critical services can render a system unresponsive or
unstable. For example, if an assembly-line robot needed to
access Dex-Net grasps for objects moving on a conveyor
belt, a 200ms network delay could significantly impede
performance. Fortunately, the Amazon EC2 configuration
demonstrated 32ms latency with relatively low variance (see
Figure III). A RAaaS service placed in this datacenter in
Oregon is capable of supporting 30Hz control signals for
physical robots in San Francisco, which is adequate for most
on-line applications and some real-time robotic tasks. If the
RAaaS server is placed in China instead, we can achieve
197ms latencies with low variance if the cross-border net-
work is used. Under this setup, the system is capable of
supporting 5Hz control signals, which is inadequate for real-
time applications but should be sufficient for applications
without tight real-time constraints.

In many such applications, however, robotic movement
times will often dominate over network latencies. For ex-
ample, when playing through a full 52-move game with the
YuMi, moving Brass and Dex-Net from a local machine to
a server in China only increased the average time per move-
ment from 4.0 s to 4.3 s. Furthermore, the network latency



could be hidden entirely by requesting grasp suggestions for
the next move during the execution of the current one.

If latency is dominated by robot motion time, using a
RAaaS system is essentially free in terms of performance
cost, and even if latency-hiding is impossible, the increased
robustness and reduced development time brought by RAaaS
systems is often worth the small increase in latency. In
summary, while RAaaS services may not be useful in all real-
time applications, many applications with looser constraints
could benefit greatly from using a RAaaS framework with
very little downside.

In future work, we will perform experiments to test how
well the Brass system performs when parts are moving on
a conveyor belt to further evaluate the effects of network
latency. We will also explore Cloud-based object identifica-
tion and pose detection, where parts are presented at random
and RGBD images are uploaded to a remote perception
server that identifies the object, position, and orientation
before selecting grasps. We will also introduce other robot
services such as path planning and calibration into the Brass
framework.

ACKNOWLEDGMENTS

We thank all members of the AUTOLAB and the student
interns at Cloudminds – Shao Zhou, Aashna Garg, and
Michael Yu – for their advice and contributions during
system setup. We also thank Ben Kehoe, Pieter Abbeel, and
Arjun Singh for discussions about Cloud Robotics and James
Kuffner of Toyota Research and Kai Kohlhoff and Torsten
Kroeger of Google. The authors were supported in part by
the U.S. National Science Foundation under NRI Award IIS-
1227536: Multilateral Manipulation by Human-Robot Col-
laborative Systems and by funding from Google, Siemens,
and Cloudminds. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
Sponsors.

REFERENCES

[1] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 398–409, 2015.

[2] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kroger, J. Kuffner, and K. Goldberg, “Dex-net 1.0:
A cloud-based network of 3d objects for robust grasp planning using
a multi-armed bandit model with correlated rewards,” in Proc. IEEE
Int. Conference on Robotics and Automation (ICRA), 2016.

[3] Robots versus wizards chess set. [Online]. Available: http://www.
thingiverse.com/thing:351119

[4] K. Goldberg and R. Siegwart, Beyond Webcams: An Introduction to
Online Robots. MIT Press, 2002.

[5] M. Inaba, “Remote-brained robots,” in Proc. International Joint Con-
ference on Artificial Intelligence, 1997, pp. 1593–1606.

[6] Ieee networked robots technical committee. [Online]. Available:
http://www-users.cs.umn.edu/∼isler/tc/

[7] What is roboearth? [Online]. Available: http://www.roboearth.org/
what-is-roboearth

[8] M. Waibel, M. Beetz, J. Civera, R. dAndrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. Montiel, A. Perzylo et al., “A
world wide web for robots,” IEEE Robotics & Automation Magazine,
vol. 18, no. 2, pp. 69–82, 2011.

[9] M. Tenorth, A. C. Perzylo, R. Lafrenz, and M. Beetz, “The roboearth
language: Representing and exchanging knowledge about actions,
objects, and environments,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on. IEEE, 2012, pp. 1284–1289.

[10] J. J. Kuffner et al., “Cloud-enabled robots,” in IEEE-RAS international
conference on humanoid robotics, Nashville, TN, 2010.

[11] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta:
A cloud robotics platform,” IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 2, pp. 481–493, 2015.

[12] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[13] A. Vick, V. Vonásek, R. Pěnička, and J. Krüger, “Robot control
as a servicetowards cloud-based motion planning and control for
industrial robots,” in Robot Motion and Control (RoMoCo), 2015 10th
International Workshop on. IEEE, 2015, pp. 33–39.

[14] C. Zieliński, W. Szynkiewicz, M. Figat, M. Szlenk, T. Kornuta,
W. Kasprzak, M. Stefańczyk, T. Zielińska, and J. Figat, “Reconfig-
urable control architecture for exploratory robots,” in Robot Motion
and Control (RoMoCo), 2015 10th International Workshop on. IEEE,
2015, pp. 130–135.

[15] K. Bekris, R. Shome, A. Krontiris, and A. Dobson, “Cloud automation:
Precomputing roadmaps for flexible manipulation,” IEEE Robotics &
Automation Magazine, vol. 22, no. 2, pp. 41–50, 2015.

[16] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F.
Kong, A. S. Kumar, K. D. Meng, and G. W. Kit, “Davinci: A cloud
computing framework for service robots,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.
3084–3089.

[17] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
“Cloud-based robot grasping with the google object recognition en-
gine,” in Robotics and Automation (ICRA), 2013 IEEE International
Conference on. IEEE, 2013, pp. 4263–4270.

[18] B. Kehoe, “Cloud-based methods and architectures for robot grasping,”
Ph.D. dissertation, Univ. of California, Berkeley, 2014.

[19] A. Singh, “Benchmarks for cloud robotics,” Ph.D. dissertation, Univ.
of California, Berkeley, 2016.

[20] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”
in ICRA. Citeseer, 2000, pp. 348–353.

[21] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical
introduction to robotic manipulation. CRC press, 1994.

[22] C. Ferrari and J. Canny, “Planning optimal grasps,” in Robotics and
Automation, 1992. Proceedings., 1992 IEEE International Conference
on. IEEE, 1992, pp. 2290–2295.

[23] J. Kim, K. Iwamoto, J. J. Kuffner, Y. Ota, and N. S. Pollard,
“Physically based grasp quality evaluation under pose uncertainty,”
IEEE Transactions on Robotics, vol. 29, no. 6, pp. 1424–1439, 2013.

[24] J. Weisz and P. K. Allen, “Pose error robust grasping from contact
wrench space metrics,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on. IEEE, 2012, pp. 557–562.

[25] M. Laskey, J. Mahler, Z. McCarthy, F. T. Pokorny, S. Patil, J. Van
Den Berg, D. Kragic, P. Abbeel, and K. Goldberg, “Multi-armed
bandit models for 2d grasp planning with uncertainty,” in 2015 IEEE
International Conference on Automation Science and Engineering
(CASE). IEEE, 2015, pp. 572–579.

[26] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp
planning,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 4304–4311.

[27] E. Johns, S. Leutenegger, and A. J. Davison, “Deep learning a grasp
function for grasping under gripper pose uncertainty,” arXiv preprint
arXiv:1608.02239, 2016.

[28] ABB YuMi Datasheet, ABB Group, 2015.
[29] J. Wiegley, A. Rao, and K. Goldberg, “Computing a statistical distri-

bution of stable poses for a polyhedron,” in In 30th Annual Allerton
Conf. on Communications, Control and Computing, 1992.

[30] J. Weisz and P. Allen, “Pose error robust grasping from contact
wrench space metrics,” in Proc. IEEE Int. Conference on Robotics
and Automation (ICRA)’12, 2012.

[31] J. Kim, K. Imwamoto, J. Kuffner, Y. Ota, and N. Pollard, “Physically
based grasp quality evaluation under uncertainty,” in Proc. IEEE Int.
Conference on Robotics and Automation (ICRA)’12, 2012.

[32] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. IEEE Int.
Conference on Robotics and Automation (ICRA)’92, 1992.

http://www.thingiverse.com/thing:351119
http://www.thingiverse.com/thing:351119
http://www-users.cs.umn.edu/~isler/tc/
http://www.roboearth.org/what-is-roboearth
http://www.roboearth.org/what-is-roboearth

	INTRODUCTION
	RELATED WORK
	SYSTEM DESIGN
	Dual-Arm YuMi Robot
	Robot Command Unit (RCU)
	Cross-Border Network Service
	Brass
	Dexterity Network

	EXPERIMENTS AND RESULTS
	Individual and Sequential Grasp Success With and Without Dex-Net
	Chess Movement Time vs. Network Latencies

	DISCUSSION AND FUTURE WORK
	References

